Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea.
Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
Hum Reprod Update. 2016 Sep;22(5):588-619. doi: 10.1093/humupd/dmw020. Epub 2016 Jul 6.
Engineered nanoparticles (ENPs) offer technological advantages for a variety of industrial and consumer products as well as show promise for biomedical applications. Recent progress in the field of nanotechnology has led to increased exposure to nanoparticles by humans. To date, little is known about the adverse effects of these ENPs on reproductive health, although interest in nanotechnology area is growing. A few biocompatible ENPs have a high loading capacity for exogenous substances, including drugs, DNA or proteins, and can selectively deliver molecular cargo into cells; however, they represent a potential tool for gene delivery into gametes and embryos.
Understanding the reprotoxicological aspects of these ENPs is of the utmost importance to reliably estimate its potential impact on human health. In addition, a search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Therefore, in this review we summarize the toxic effects of a few ENPs (metal and metal oxides, carbon-based nanoparticles, quantum dots and chitosan) in mammalian germ cells and developing embryos, and propose some treatment strategies that could mitigate nanoparticle-mediated toxicity. In addition, we outline the anticipated applications of ENPs in transgenic animal production in order to generate models for investigations into the mechanisms for human disease.
A literature search was performed using the National Center for Biotechnology Information PubMed database up until March 2016 and relevant keywords were used to obtain information regarding mammalian germ cell-specific toxicity and embryotoxicity of ENPs, possible treatment strategies, as well as the anticipated applications of nanoparticles in gene delivery in germ cells and embryos. Only English language publications were included.
Here, we demonstrate the toxicological effects of ENPs in mammalian germ cells and developing embryos by considering both in vitro and in vivo experimental models based on the existing literature. The biodistribution and cellular uptake of ENPs and the observed toxicities are mostly dependent on ENP size and surface-coating agents (surface functional groups/surface charge). ENPs have been shown to induce toxicity via oxidative stress, inflammation and DNA damage in both human and mouse germ cells. Use of antioxidant, anti-inflammatory drugs and selective metal chelators would be beneficial against nanoparticle-induced toxicity.
Our review provides the reproductive scientists a mechanistic insight into the reprotoxicological aspects of ENPs to reliably estimate its potential impact on human health and help to select/design protective agents to combat ENP-mediated toxicity. Furthermore, research regarding the detailed mechanism(s) of ENP toxicity in mammalian germ cells and developing embryos as well as the search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Furthermore, we anticipate that investigations into the possibility of applying nanovectors to gene delivery in germ cells and early embryos will open new horizons in reproductive biology.
工程纳米粒子(ENPs)为各种工业和消费产品提供了技术优势,并且在生物医学应用方面也有很大的应用前景。纳米技术领域的最新进展导致人类接触纳米粒子的机会增加。迄今为止,尽管人们对纳米技术领域的兴趣日益浓厚,但对于这些 ENPs 对生殖健康的不良影响知之甚少。一些生物相容性良好的 ENPs 具有很高的外源性物质(包括药物、DNA 或蛋白质)的载药量,并且可以选择性地将分子货物递送到细胞中;然而,它们代表了将基因递送到配子和胚胎中的潜在工具。
了解这些 ENPs 的生殖毒性方面对于可靠地估计其对人类健康的潜在影响至关重要。此外,寻找对抗 ENP 介导的生殖毒性的保护剂是有必要的。因此,在这篇综述中,我们总结了几种 ENPs(金属和金属氧化物、碳基纳米粒子、量子点和壳聚糖)在哺乳动物生殖细胞和发育中的胚胎中的毒性作用,并提出了一些可能减轻纳米粒子介导的毒性的治疗策略。此外,我们概述了 ENPs 在转基因动物生产中的预期应用,以生成用于研究人类疾病机制的模型。
使用美国国立生物技术信息中心 PubMed 数据库进行文献检索,截至 2016 年 3 月,使用相关关键词获取有关哺乳动物生殖细胞特异性毒性和 ENPs 胚胎毒性、可能的治疗策略以及纳米粒子在生殖细胞和胚胎中基因传递的预期应用的信息。仅纳入英文文献。
在这里,我们根据现有文献,通过考虑基于体外和体内实验模型,展示了 ENPs 在哺乳动物生殖细胞和发育中的胚胎中的毒理学效应。ENPs 的生物分布和细胞摄取以及观察到的毒性主要取决于 ENP 的大小和表面涂层剂(表面官能团/表面电荷)。已经表明,ENPs 通过氧化应激、炎症和 DNA 损伤在人和小鼠生殖细胞中诱导毒性。使用抗氧化剂、抗炎药物和选择性金属螯合剂对抗纳米粒子诱导的毒性是有益的。
我们的综述为生殖科学家提供了关于 ENPs 生殖毒性方面的机制见解,以便可靠地估计其对人类健康的潜在影响,并帮助选择/设计对抗 ENP 介导的毒性的保护剂。此外,研究 ENPs 在哺乳动物生殖细胞和发育中的胚胎中的毒性的详细机制以及寻找对抗 ENP 介导的生殖毒性的保护剂是有必要的。此外,我们预计,对将纳米载体应用于生殖细胞和早期胚胎中的基因传递的可能性的研究将为生殖生物学开辟新的视野。