Suppr超能文献

精神分裂症疾病状态的验证:美国和欧洲人群聚类分析的比较

Validation of disease states in schizophrenia: comparison of cluster analysis between US and European populations.

作者信息

Thokagevistk Katia, Millier Aurélie, Lenert Leslie, Sadikhov Shamil, Moreno Santiago, Toumi Mondher

机构信息

Creativ-Ceutical, Paris, France.

Biomedical Informatics Center, Medical University of South Carolina, Charleston, SC, USA.

出版信息

J Mark Access Health Policy. 2016 Jun 20;4. doi: 10.3402/jmahp.v4.30725. eCollection 2016.

Abstract

BACKGROUND

There is controversy as to whether use of statistical clustering methods to identify common disease patterns in schizophrenia identifies patterns generalizable across countries.

OBJECTIVE

The goal of this study was to compare disease states identified in a published study (Mohr/Lenert, 2004) considering US patients to disease states in a European cohort (EuroSC) considering English, French, and German patients.

METHODS

Using methods paralleling those in Mohr/Lenert, we conducted a principal component analysis (PCA) on Positive and Negative Syndrome Scale items in the EuroSC data set (n=1,208), followed by k-means cluster analyses and a search for an optimal k. The optimal model structure was compared to Mohr/Lenert by assigning discrete severity levels to each cluster in each factor based on the cluster center. A harmonized model was created and patients were assigned to health states using both approaches; agreement rates in state assignment were then calculated.

RESULTS

Five factors accounting for 56% of total variance were obtained from PCA. These factors corresponded to positive symptoms (Factor 1), negative symptoms (Factor 2), cognitive impairment (Factor 3), hostility/aggression (Factor 4), and mood disorder (Factor 5) (as in Mohr/Lenert). The optimal number of cluster states was six. The kappa statistic (95% confidence interval) for agreement in state assignment was 0.686 (0.670-0.703).

CONCLUSION

The patterns of schizophrenia effects identified using clustering in two different data sets were reasonably similar. Results suggest the Mohr/Lenert health state model is potentially generalizable to other populations.

摘要

背景

关于使用统计聚类方法识别精神分裂症的常见疾病模式是否能识别出可在各国通用的模式,存在争议。

目的

本研究的目的是比较在一项已发表研究(Mohr/Lenert,2004年)中针对美国患者所确定的疾病状态与在一个欧洲队列(EuroSC)中针对英国、法国和德国患者所确定的疾病状态。

方法

我们采用与Mohr/Lenert研究中类似的方法,对EuroSC数据集(n = 1208)中的阳性和阴性症状量表项目进行主成分分析(PCA),随后进行k均值聚类分析并寻找最佳的k值。通过根据聚类中心为每个因素中的每个聚类分配离散的严重程度级别,将最佳模型结构与Mohr/Lenert的模型进行比较。创建一个统一的模型,并使用两种方法将患者分配到健康状态;然后计算状态分配的一致率。

结果

通过主成分分析获得了五个因素,它们占总方差的56%。这些因素分别对应阳性症状(因素1)、阴性症状(因素2)、认知障碍(因素3)、敌意/攻击行为(因素4)和情绪障碍(因素5)(与Mohr/Lenert研究中的情况相同)。聚类状态的最佳数量为六个。状态分配一致性的kappa统计量(95%置信区间)为0.686(0.670 - 0.703)。

结论

在两个不同数据集中使用聚类方法识别出的精神分裂症效应模式相当相似。结果表明Mohr/Lenert健康状态模型可能适用于其他人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7838/4916257/8864d9e730dc/JMAHP-4-30725-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验