文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用扩散磁共振成像对脑和脊髓中的神经突与胞体组织进行表征。

Characterization of neurite and soma organization in the brain and spinal cord with diffusion MRI.

作者信息

Schilling Kurt G, Palombo Marco, Witt Atlee A, O'Grady Kristin P, Pizzolato Marco, Landman Bennett A, Smith Seth A

机构信息

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States.

Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.

出版信息

Imaging Neurosci (Camb). 2025 Aug 19;3. doi: 10.1162/IMAG.a.111. eCollection 2025.


DOI:10.1162/IMAG.a.111
PMID:40843024
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12365691/
Abstract

The central nervous system (CNS), comprising both the brain and spinal cord, is a complex network of white and gray matter responsible for sensory, motor, and cognitive functions. Advanced diffusion MRI (dMRI) techniques offer a promising mechanism to non-invasively characterize CNS architecture, however, most studies focus on the brain or spinal cord in isolation. Here, we implemented a clinically feasible dMRI protocol on a 3T scanner to simultaneously characterize neurite and soma microstructure of both the brain and spinal cord. The protocol enabled the use of Diffusion Tensor Imaging (DTI), Standard Model Imaging (SMI), and Soma and Neurite Density Imaging (SANDI), representing the first time SMI and SANDI have been evaluated in the cord, and in the cord and brain simultaneously. Our results demonstrate high image quality even at high diffusion weightings, reproducibility of SMI- and SANDI-derived metrics similar to those of DTI with few exceptions, and biologically feasible contrasts between and within white and gray matter regions. Reproducibility and contrasts were decreased in the cord compared with that of the brain, revealing challenges due to partial volume effects and image preprocessing. This study establishes a harmonized approach for brain and cord microstructural imaging, and the opportunity to study CNS pathologies and biomarkers of structural integrity across the neuroaxis.

摘要

中枢神经系统(CNS)由脑和脊髓组成,是一个由白质和灰质构成的复杂网络,负责感觉、运动和认知功能。先进的扩散磁共振成像(dMRI)技术为非侵入性地表征中枢神经系统结构提供了一种很有前景的机制,然而,大多数研究都孤立地关注脑或脊髓。在这里,我们在一台3T扫描仪上实施了一种临床可行的dMRI方案,以同时表征脑和脊髓的神经突和胞体微观结构。该方案能够使用扩散张量成像(DTI)、标准模型成像(SMI)和胞体与神经突密度成像(SANDI),这是首次在脊髓中以及同时在脊髓和脑中对SMI和SANDI进行评估。我们的结果表明,即使在高扩散权重下,图像质量也很高,SMI和SANDI衍生指标的可重复性与DTI相似,只有少数例外,并且白质和灰质区域之间以及内部在生物学上具有可行的对比。与脑相比,脊髓中的可重复性和对比度有所降低,这揭示了由于部分容积效应和图像预处理带来的挑战。本研究建立了一种用于脑和脊髓微观结构成像的统一方法,以及研究整个神经轴上中枢神经系统病理学和结构完整性生物标志物的机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/5fec6724924e/IMAG.a.111_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/ee2215abb6c9/IMAG.a.111_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/b799234bfc75/IMAG.a.111_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/37b515796335/IMAG.a.111_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/25aeb0b53adf/IMAG.a.111_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/8f4f5d82f638/IMAG.a.111_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/ecf781e8c0fc/IMAG.a.111_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/7dbd2a8bcdbe/IMAG.a.111_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/bf0b5b2b17b0/IMAG.a.111_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/a0fc7c448741/IMAG.a.111_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/5fec6724924e/IMAG.a.111_fig10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/ee2215abb6c9/IMAG.a.111_fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/b799234bfc75/IMAG.a.111_fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/37b515796335/IMAG.a.111_fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/25aeb0b53adf/IMAG.a.111_fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/8f4f5d82f638/IMAG.a.111_fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/ecf781e8c0fc/IMAG.a.111_fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/7dbd2a8bcdbe/IMAG.a.111_fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/bf0b5b2b17b0/IMAG.a.111_fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/a0fc7c448741/IMAG.a.111_fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c6/12365691/5fec6724924e/IMAG.a.111_fig10.jpg

相似文献

[1]
Characterization of neurite and soma organization in the brain and spinal cord with diffusion MRI.

Imaging Neurosci (Camb). 2025-8-19

[2]
Characterization of neurite and soma organization in the brain and spinal cord with diffusion MRI.

bioRxiv. 2025-2-20

[3]
In vivo cortical microstructure mapping using high-gradient diffusion MRI accounting for intercompartmental water exchange effects.

Neuroimage. 2025-7-1

[4]
Translating state-of-the-art spinal cord MRI techniques to clinical use: A systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI.

Neuroimage Clin. 2015-12-4

[5]
Comparing single-shot EPI and 2D-navigated, multi-shot EPI diffusion tensor imaging acquisitions in the lumbar spinal cord at 3T.

Magn Reson Imaging. 2025-10

[6]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[7]
MarkVCID cerebral small vessel consortium: II. Neuroimaging protocols.

Alzheimers Dement. 2021-4

[8]
Unique information from common diffusion MRI models about white-matter differences across the human adult lifespan.

Imaging Neurosci (Camb). 2023-12-21

[9]
Denoising Improves Cross-Scanner and Cross-Protocol Test-Retest Reproducibility of Diffusion Tensor and Kurtosis Imaging.

Hum Brain Mapp. 2025-3

[10]
Characterizing the microstructural transition at the gray matter-white matter interface: Implementation and demonstration of age-associated differences.

Neuroimage. 2025-2-1

本文引用的文献

[1]
Volume electron microscopy in injured rat brain validates white matter microstructure metrics from diffusion MRI.

Imaging Neurosci (Camb). 2024-7-2

[2]
Influence of preprocessing, distortion correction and cardiac triggering on the quality of diffusion MR images of spinal cord.

Magn Reson Imaging. 2024-5

[3]
Mapping tissue microstructure across the human brain on a clinical scanner with soma and neurite density image metrics.

Hum Brain Mapp. 2023-9

[4]
Axial and radial axonal diffusivities and radii from single encoding strongly diffusion-weighted MRI.

Med Image Anal. 2023-5

[5]
Joint estimation of relaxation and diffusion tissue parameters for prostate cancer with relaxation-VERDICT MRI.

Sci Rep. 2023-2-21

[6]
Denoising of diffusion MRI in the cervical spinal cord - effects of denoising strategy and acquisition on intra-cord contrast, signal modeling, and feature conspicuity.

Neuroimage. 2023-2-1

[7]
Estimating axial diffusivity in the NODDI model.

Neuroimage. 2022-11-15

[8]
Reproducibility of the Standard Model of diffusion in white matter on clinical MRI systems.

Neuroimage. 2022-8-15

[9]
Neurite Exchange Imaging (NEXI): A minimal model of diffusion in gray matter with inter-compartment water exchange.

Neuroimage. 2022-8-1

[10]
Diffusion time dependence, power-law scaling, and exchange in gray matter.

Neuroimage. 2022-5-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索