Ealy Megan, Ellwanger Daniel C, Kosaric Nina, Stapper Andres P, Heller Stefan
Department of Otolaryngology-Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305;
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305.
Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):8508-13. doi: 10.1073/pnas.1605537113. Epub 2016 Jul 11.
Efficient pluripotent stem cell guidance protocols for the production of human posterior cranial placodes such as the otic placode that gives rise to the inner ear do not exist. Here we use a systematic approach including defined monolayer culture, signaling modulation, and single-cell gene expression analysis to delineate a developmental trajectory for human otic lineage specification in vitro. We found that modulation of bone morphogenetic protein (BMP) and WNT signaling combined with FGF and retinoic acid treatments over the course of 18 days generates cell populations that develop chronological expression of marker genes of non-neural ectoderm, preplacodal ectoderm, and early otic lineage. Gene expression along this differentiation path is distinct from other lineages such as endoderm, mesendoderm, and neural ectoderm. Single-cell analysis exposed the heterogeneity of differentiating cells and allowed discrimination of non-neural ectoderm and otic lineage cells from off-target populations. Pseudotemporal ordering of human embryonic stem cell and induced pluripotent stem cell-derived single-cell gene expression profiles revealed an initially synchronous guidance toward non-neural ectoderm, followed by comparatively asynchronous occurrences of preplacodal and otic marker genes. Positive correlation of marker gene expression between both cell lines and resemblance to mouse embryonic day 10.5 otocyst cells implied reasonable robustness of the guidance protocol. Single-cell trajectory analysis further revealed that otic progenitor cell types are induced in monolayer cultures, but further development appears impeded, likely because of lack of a lineage-stabilizing microenvironment. Our results provide a framework for future exploration of stabilizing microenvironments for efficient differentiation of stem cell-generated human otic cell types.
目前尚不存在用于生成人类后颅窝基板(如产生内耳的耳基板)的高效多能干细胞定向分化方案。在此,我们采用了一种系统方法,包括特定的单层培养、信号调节和单细胞基因表达分析,以描绘人类耳系在体外定向分化的发育轨迹。我们发现,在18天的过程中,调节骨形态发生蛋白(BMP)和WNT信号,并结合FGF和视黄酸处理,可产生按时间顺序表达非神经外胚层、基板前外胚层和早期耳系标记基因的细胞群体。沿着这条分化路径的基因表达与内胚层、中内胚层和神经外胚层等其他谱系不同。单细胞分析揭示了分化细胞的异质性,并能够从非目标群体中区分出非神经外胚层和耳系细胞。对人类胚胎干细胞和诱导多能干细胞来源的单细胞基因表达谱进行伪时间排序,结果显示最初向非神经外胚层的同步定向分化,随后基板前和耳标记基因的出现相对异步。两种细胞系之间标记基因表达的正相关以及与小鼠胚胎第10.5天耳囊细胞的相似性,表明该定向分化方案具有合理的稳健性。单细胞轨迹分析进一步表明,耳祖细胞类型在单层培养中被诱导产生,但进一步的发育似乎受到阻碍,这可能是由于缺乏稳定谱系的微环境。我们的结果为未来探索稳定微环境以有效分化干细胞生成的人类耳细胞类型提供了一个框架。