Suppr超能文献

新发心房颤动的简易预测因素。

Simple predictors for new onset atrial fibrillation.

作者信息

Cabrera Sandra, Vallès Ermengol, Benito Begoña, Alcalde Óscar, Jiménez Jesús, Fan Roger, Martí-Almor Julio

机构信息

Electrophysiology Unit, Department of Cardiology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain; Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.

Electrophysiology Unit, Department of Cardiology, Hospital del Mar, Universitat Autònoma de Barcelona, Barcelona, Spain; Heart Diseases Biomedical Research Group, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.

出版信息

Int J Cardiol. 2016 Oct 15;221:515-20. doi: 10.1016/j.ijcard.2016.07.077. Epub 2016 Jul 8.

Abstract

BACKGROUND

Predicting atrial fibrillation is a tremendous challenge. Only few studies have included 24h-Holter monitoring characteristics to predict new onset AF (NOAF).

OBJECTIVES

Our aim is to define simple predictors for NOAF.

METHODS

The study population included 468 patients undergoing Holter for any cause. After excluding 169 patients for history of AF prior to or during the Holter monitoring period, 299 patients were assessed for incidence of NOAF.

RESULTS

Age at inclusion was 62.5±18years (53.5% male). After a median follow up of 39.1 [IQI 36.6-40] months, the incidence of NOAF was 10.4%. With univariate analysis, age, hypertension, diabetes, renal impairment, heart failure/cardiomyopathy, left ventricle ejection fraction ≤50%, left atrium diameter ≥40mm, CHA2DS2 VASc ≥4, premature atrial complexes (PAC) ≥0.2%, and PR interval were associated with NOAF. With multivariate analysis, age (HR 1075; p=0.001 per year), presence of heart failure/cardiomyopathy (HR 6,16; p<0.001), PAC≥0.2% (HR 3,32; p=0.003) and PR interval (HR 1.011; p=0.006 per millisecond) were independent predictors for NOAF. Those predictors were used to create a risk calculator for NOAF, which was validated in an independent cohort of 200 consecutive patients with similar baseline characteristics. This new tool resulted in good discrimination capacity calculated by the C index for NOAF prediction: Area under curve (AUC) (95% CI) 0.794 (0.714-0.875) at 2years and 0.794 (0.713-0.875) at 3years.

CONCLUSIONS

Simple clinical, ECG and Holter monitoring parameters are able to predict NOAF in a broad population and may help guide more rigorous monitoring for atrial fibrillation.

摘要

背景

预测房颤是一项巨大挑战。仅有少数研究纳入了24小时动态心电图监测特征来预测新发房颤(NOAF)。

目的

我们的目标是确定NOAF的简单预测指标。

方法

研究人群包括468例因任何原因接受动态心电图检查的患者。在排除169例在动态心电图监测期间之前或期间有房颤病史的患者后,对299例患者评估NOAF的发生率。

结果

纳入时年龄为62.5±18岁(男性占53.5%)。经过中位39.1[四分位间距36.6 - 40]个月的随访,NOAF的发生率为10.4%。单因素分析显示,年龄、高血压、糖尿病、肾功能损害、心力衰竭/心肌病、左心室射血分数≤50%、左心房直径≥40mm、CHA2DS2 - VASc≥4、房性早搏(PAC)≥0.2%以及PR间期与NOAF相关。多因素分析显示,年龄(HR 1.075;每年p = 0.001)、存在心力衰竭/心肌病(HR 6.16;p < 0.001)、PAC≥0.2%(HR 3.32;p = 0.003)以及PR间期(HR 1.011;每毫秒p = 0.006)是NOAF的独立预测指标。这些预测指标被用于创建一个NOAF风险计算器,并在一个具有相似基线特征的200例连续患者的独立队列中进行验证。这个新工具在预测NOAF时通过C指数计算得出具有良好的区分能力:2年时曲线下面积(AUC)(95%CI)为0.794(0.714 - 0.875),3年时为0.794(0.713 - 0.875)。

结论

简单的临床、心电图和动态心电图监测参数能够在广泛人群中预测NOAF,并可能有助于指导对房颤进行更严格的监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验