Suppr超能文献

利用大数据对新发房颤进行性别特异性预测的观点

Perspectives on Sex- and Gender-Specific Prediction of New-Onset Atrial Fibrillation by Leveraging Big Data.

作者信息

Geurts Sven, Lu Zuolin, Kavousi Maryam

机构信息

Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.

出版信息

Front Cardiovasc Med. 2022 Jul 11;9:886469. doi: 10.3389/fcvm.2022.886469. eCollection 2022.

Abstract

Atrial fibrillation (AF), the most common sustained cardiac arrhythmia, has a large impact on quality of life and is associated with increased risk of hospitalization, morbidity, and mortality. Over the past two decades advances regarding the clinical epidemiology and management of AF have been established. Moreover, sex differences in the prevalence, incidence, prediction, pathophysiology, and prognosis of AF have been identified. Nevertheless, AF remains to be a complex and heterogeneous disorder and a comprehensive sex- and gender-specific approach to predict new-onset AF is lacking. The exponential growth in various sources of big data such as electrocardiograms, electronic health records, and wearable devices, carries the potential to improve AF risk prediction. Leveraging these big data sources by artificial intelligence (AI)-enabled approaches, in particular in a sex- and gender-specific manner, could lead to substantial advancements in AF prediction and ultimately prevention. We highlight the current status, premise, and potential of big data to improve sex- and gender-specific prediction of new-onset AF.

摘要

心房颤动(AF)是最常见的持续性心律失常,对生活质量有很大影响,并与住院、发病和死亡风险增加相关。在过去二十年中,关于AF的临床流行病学和管理方面已经取得了进展。此外,AF在患病率、发病率、预测、病理生理学和预后方面的性别差异也已得到确认。然而,AF仍然是一种复杂且异质性的疾病,缺乏一种全面的针对性别特异性的方法来预测新发AF。诸如心电图、电子健康记录和可穿戴设备等各种大数据源的指数级增长,具有改善AF风险预测的潜力。通过人工智能(AI)支持的方法利用这些大数据源,特别是以性别特异性的方式,可能会在AF预测乃至最终预防方面取得重大进展。我们强调了大数据在改善新发AF的性别特异性预测方面的现状、前提和潜力。

相似文献

2
5
The Use of Artificial Intelligence to Predict the Development of Atrial Fibrillation.利用人工智能预测心房颤动的发生。
Curr Cardiol Rep. 2023 May;25(5):381-389. doi: 10.1007/s11886-023-01859-w. Epub 2023 Mar 31.
7
Gender in atrial fibrillation: Ten years later.心房颤动中的性别因素:十年之后
Gend Med. 2010 Jun;7(3):206-17. doi: 10.1016/j.genm.2010.06.001.
8
Big Data and Atrial Fibrillation: Current Understanding and New Opportunities.大数据与心房颤动:当前认识与新机遇。
J Cardiovasc Transl Res. 2020 Dec;13(6):944-952. doi: 10.1007/s12265-020-10008-5. Epub 2020 May 6.

本文引用的文献

3
Principles and Practice of Explainable Machine Learning.可解释机器学习原理与实践
Front Big Data. 2021 Jul 1;4:688969. doi: 10.3389/fdata.2021.688969. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验