Suppr超能文献

数字病理学的图像信息学与分子分析中的新兴主题

Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

作者信息

Bhargava Rohit, Madabhushi Anant

机构信息

Departments of Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, Mechanical Science and Engineering, and Chemistry, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; email:

Center for Computational Imaging and Personalized Diagnostics; Departments of Biomedical Engineering, Urology, Pathology, Radiology, Radiation Oncology, General Medical Sciences, Electrical Engineering, and Computer Science; and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106; email:

出版信息

Annu Rev Biomed Eng. 2016 Jul 11;18:387-412. doi: 10.1146/annurev-bioeng-112415-114722.

Abstract

Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area.

摘要

病理学对于疾病与发育研究以及临床决策至关重要。一百多年来,病理学实践一直涉及由经过培训的人员使用光学显微镜分析染色薄组织切片的图像。技术进步正推动这一模式朝着数字病理学(DP)发生重大变革。病理学的数字化转型不仅限于图像的记录、存档和检索,还提供了新的计算工具,以促进精准医学做出更优决策。首先,我们讨论数字病理学中计算图像分析和成像仪器方面的一些新兴创新。其次,我们讨论病理学中的分子对比。传统上,分子数字病理学一直是使用分子特异性染料的病理学扩展。无标记光谱图像正迅速成为另一个重要的信息来源,我们将描述这一发展的益处和潜力。第三,我们描述多模态数字病理学,它由计算算法实现,结合了结构病理学和分子病理学的最佳特性。最后,我们提供远程病理学、教育和精准医学应用领域的示例。我们通过讨论该领域的挑战和新出现的机遇来结束本文。

相似文献

4
New Trends of Emerging Technologies in Digital Pathology.数字病理学中新兴技术的新趋势
Pathobiology. 2016;83(2-3):61-9. doi: 10.1159/000443482. Epub 2016 Apr 26.
5
[Digital Pathology: Current Status and Prospects of Clinical Application].[数字病理学:临床应用的现状与前景]
Sichuan Da Xue Xue Bao Yi Xue Ban. 2021 Mar;52(2):156-161. doi: 10.12182/20210360101.
6
The impact of information technology on histopathology.信息技术对组织病理学的影响。
Histopathology. 2000 Jan;36(1):1-7. doi: 10.1046/j.1365-2559.2000.00838.x.

引用本文的文献

本文引用的文献

8
Machine learning approaches to analyze histological images of tissues from radical prostatectomies.用于分析前列腺癌根治术组织学图像的机器学习方法。
Comput Med Imaging Graph. 2015 Dec;46 Pt 2(Pt 2):197-208. doi: 10.1016/j.compmedimag.2015.08.002. Epub 2015 Aug 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验