Suppr超能文献

基于聚类的空间分析(CluSA)框架通过图神经网络进行病理图像的慢性肾脏病预测。

Clustering-based spatial analysis (CluSA) framework through graph neural network for chronic kidney disease prediction using histopathology images.

机构信息

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Department of Internal Medicine, Nephrology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Sci Rep. 2023 Aug 5;13(1):12701. doi: 10.1038/s41598-023-39591-8.

Abstract

Machine learning applied to digital pathology has been increasingly used to assess kidney function and diagnose the underlying cause of chronic kidney disease (CKD). We developed a novel computational framework, clustering-based spatial analysis (CluSA), that leverages unsupervised learning to learn spatial relationships between local visual patterns in kidney tissue. This framework minimizes the need for time-consuming and impractical expert annotations. 107,471 histopathology images obtained from 172 biopsy cores were used in the clustering and in the deep learning model. To incorporate spatial information over the clustered image patterns on the biopsy sample, we spatially encoded clustered patterns with colors and performed spatial analysis through graph neural network. A random forest classifier with various groups of features were used to predict CKD. For predicting eGFR at the biopsy, we achieved a sensitivity of 0.97, specificity of 0.90, and accuracy of 0.95. AUC was 0.96. For predicting eGFR changes in one-year, we achieved a sensitivity of 0.83, specificity of 0.85, and accuracy of 0.84. AUC was 0.85. This study presents the first spatial analysis based on unsupervised machine learning algorithms. Without expert annotation, CluSA framework can not only accurately classify and predict the degree of kidney function at the biopsy and in one year, but also identify novel predictors of kidney function and renal prognosis.

摘要

机器学习在数字病理学中的应用已越来越多地用于评估肾功能和诊断慢性肾脏病(CKD)的根本原因。我们开发了一种新颖的计算框架,基于聚类的空间分析(CluSA),该框架利用无监督学习来学习肾脏组织中局部视觉模式之间的空间关系。该框架最大限度地减少了对耗时且不切实际的专家注释的需求。在聚类和深度学习模型中使用了从 172 个活检芯中获得的 107,471 张组织病理学图像。为了在活检样本上的聚类图像模式上纳入空间信息,我们使用颜色对聚类模式进行空间编码,并通过图神经网络进行空间分析。使用具有各种特征组的随机森林分类器来预测 CKD。为了预测活检时的 eGFR,我们达到了 0.97 的敏感性、0.90 的特异性和 0.95 的准确性。AUC 为 0.96。为了预测一年的 eGFR 变化,我们达到了 0.83 的敏感性、0.85 的特异性和 0.84 的准确性。AUC 为 0.85。本研究提出了第一个基于无监督机器学习算法的空间分析。无需专家注释,CluSA 框架不仅可以准确分类和预测活检和一年时的肾功能程度,还可以识别肾功能和肾脏预后的新预测因子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验