Suppr超能文献

通过模块化组装,具有形状记忆性能的自修复超分子生物弹性体作为多功能生物医学应用平台。

Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly.

机构信息

Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.

Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.

出版信息

Biomaterials. 2016 Oct;104:18-31. doi: 10.1016/j.biomaterials.2016.07.011. Epub 2016 Jul 9.

Abstract

Mimicking native functional dynamics for traditional biomaterials such as thermoset elastomers is limited due to their lack of responsiveness to biological stimuli and difficulties to incorporate biofunctionalities. Furthermore, the mechanical fracture of traditional thermoset elastomers caused by irreversible covalent bond rupture would lead to their permanent loss of properties. To overcome these challenges, degradable self-healed supramolecular bioelastomers are designed by an elastic poly(glycerol sebacate) (PGS) backbone and multiple hydrogen-bonding ureido-pyrimidinone (UPy) grafts. These supramolecular elastic polymers exhibit efficient self-healing, rapid shape-memory abilities and highly tunable mechanical properties due to the dynamic supramolecular interactions, and perform a good biocompatibility in vitro and a mild host response in vivo. By combining modular approaches, these supramolecular bioelastomers have been further assembled into a multifunctional platform to expand their applications in different biomedical fields. These include a complex 3D scaffold with shape-memory capacity and anisotropic mechanical properties, a controllable drug delivery model via a layer-by-layer technique, a surface antibacterial composite by physical modification, and a spatial oriented cell co-culture system via incorporating different cell-laden self-healing films, demonstrating their potential as building blocks in a wide range of biomedical applications where dynamic properties and biological functions are desired.

摘要

模仿热固性弹性体等传统生物材料的天然功能动态受到限制,因为它们对生物刺激的反应性差,并且难以纳入生物功能性。此外,传统热固性弹性体的机械断裂是由于不可逆的共价键断裂引起的,这将导致其性能永久丧失。为了克服这些挑战,通过弹性聚(癸二酸甘油酯)(PGS)主链和多个氢键脲嘧啶酮(UPy)接枝设计了可降解自修复超分子生物弹性体。由于动态超分子相互作用,这些超分子弹性聚合物表现出高效的自修复、快速的形状记忆能力和高度可调的机械性能,并在体外表现出良好的生物相容性和体内温和的宿主反应。通过组合模块化方法,这些超分子生物弹性体进一步组装成多功能平台,以扩展它们在不同生物医学领域的应用。这些应用包括具有形状记忆能力和各向异性机械性能的复杂 3D 支架、通过层层技术的可控药物输送模型、通过物理修饰的表面抗菌复合材料以及通过掺入不同载细胞自修复薄膜的空间定向细胞共培养系统,展示了它们作为建筑块的潜力在广泛的生物医学应用中,这些应用需要动态特性和生物功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验