Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.
International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.
Nano Lett. 2016 Aug 10;16(8):5114-9. doi: 10.1021/acs.nanolett.6b02042. Epub 2016 Jul 18.
In atomic systems, the mixing of metals results in distinct phase behavior that depends on the identity and bonding characteristics of the atoms. In nanoscale systems, the use of oligonucleotides as programmable "bonds" that link nanoparticle "atoms" into superlattices allows for the decoupling of atom identity and bonding. While much research in atomic systems is dedicated to understanding different phase behavior of mixed metals, it is not well understood on the nanoscale how changes in the nanoscale "bond" affect the phase behavior of nanoparticle crystals. In this work, the identity of the atom is kept the same, but the chemical nature of the bond is altered, which is not possible in atomic systems, through the use of DNA and RNA bonding elements. These building blocks assemble into single crystal nanoparticle superlattices with mixed DNA and RNA bonding elements throughout. The nanoparticle crystals can be dynamically changed through the selective and enzymatic hydrolysis of the RNA bonding elements, resulting in superlattices that retain their crystalline structure and habit, while incorporating up to 35% random vacancies generated from the nanoparticles removed. Therefore, the bonding elements of nanoparticle crystals can be enzymatically and selectively addressed without affecting the nature of the atom.
在原子系统中,金属的混合导致了独特的相行为,这取决于原子的身份和键合特性。在纳米系统中,使用寡核苷酸作为可编程的“键”,将纳米颗粒“原子”链接成超晶格,从而可以解耦原子身份和键合。虽然原子系统中的大量研究致力于理解混合金属的不同相行为,但在纳米尺度上,纳米“键”的变化如何影响纳米颗粒晶体的相行为还不太清楚。在这项工作中,通过使用 DNA 和 RNA 键合元件,原子的身份保持不变,但键的化学性质发生了变化,这在原子系统中是不可能的。这些构建块组装成具有混合 DNA 和 RNA 键合元件的单晶纳米颗粒超晶格。通过选择性和酶促水解 RNA 键合元件,可以动态改变纳米颗粒晶体,从而形成保留其晶体结构和形态的超晶格,同时从去除的纳米颗粒中引入高达 35%的随机空位。因此,可以在不影响原子性质的情况下,通过酶促和选择性地处理纳米颗粒晶体的键合元件。