Suppr超能文献

分数阶 Hopfield 神经网络:分数阶动态联想递归神经网络。

Fractional Hopfield Neural Networks: Fractional Dynamic Associative Recurrent Neural Networks.

出版信息

IEEE Trans Neural Netw Learn Syst. 2017 Oct;28(10):2319-2333. doi: 10.1109/TNNLS.2016.2582512. Epub 2016 Jul 14.

Abstract

This paper mainly discusses a novel conceptual framework: fractional Hopfield neural networks (FHNN). As is commonly known, fractional calculus has been incorporated into artificial neural networks, mainly because of its long-term memory and nonlocality. Some researchers have made interesting attempts at fractional neural networks and gained competitive advantages over integer-order neural networks. Therefore, it is naturally makes one ponder how to generalize the first-order Hopfield neural networks to the fractional-order ones, and how to implement FHNN by means of fractional calculus. We propose to introduce a novel mathematical method: fractional calculus to implement FHNN. First, we implement fractor in the form of an analog circuit. Second, we implement FHNN by utilizing fractor and the fractional steepest descent approach, construct its Lyapunov function, and further analyze its attractors. Third, we perform experiments to analyze the stability and convergence of FHNN, and further discuss its applications to the defense against chip cloning attacks for anticounterfeiting. The main contribution of our work is to propose FHNN in the form of an analog circuit by utilizing a fractor and the fractional steepest descent approach, construct its Lyapunov function, prove its Lyapunov stability, analyze its attractors, and apply FHNN to the defense against chip cloning attacks for anticounterfeiting. A significant advantage of FHNN is that its attractors essentially relate to the neuron's fractional order. FHNN possesses the fractional-order-stability and fractional-order-sensitivity characteristics.

摘要

本文主要讨论了一种新颖的概念框架

分数阶 Hopfield 神经网络(FHNN)。众所周知,分数阶微积分已被引入人工神经网络中,主要是因为它具有长期记忆和非局部性。一些研究人员在分数阶神经网络方面进行了有趣的尝试,并获得了优于整数阶神经网络的竞争优势。因此,人们自然而然地思考如何将一阶 Hopfield 神经网络推广到分数阶神经网络,以及如何通过分数阶微积分来实现 FHNN。我们提出引入一种新的数学方法:分数阶微积分来实现 FHNN。首先,我们以模拟电路的形式实现分数阶。其次,我们利用分数阶和分数阶最陡下降法来实现 FHNN,构建其 Lyapunov 函数,并进一步分析其吸引子。然后,我们进行实验来分析 FHNN 的稳定性和收敛性,并进一步讨论其在防伪方面抵御芯片克隆攻击的应用。我们工作的主要贡献是通过利用分数阶和分数阶最陡下降法来实现模拟电路形式的 FHNN,构建其 Lyapunov 函数,证明其 Lyapunov 稳定性,分析其吸引子,并将 FHNN 应用于防伪方面抵御芯片克隆攻击。FHNN 的一个显著优势是其吸引子本质上与神经元的分数阶有关。FHNN 具有分数阶稳定性和分数阶敏感性的特点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验