Suppr超能文献

通过建模与模拟进行药物心脏安全性评估的自上而下、自下而上和中间向外策略。

Top-down, Bottom-up and Middle-out Strategies for Drug Cardiac Safety Assessment via Modeling and Simulations.

作者信息

Tylutki Zofia, Polak Sebastian, Wiśniowska Barbara

机构信息

Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Cracow, Poland.

Unit of Pharmacoepidemiology and Pharmacoeconomics, Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Str., 30-688 Cracow, Poland ; Simcyp Ltd. (part of Certara), Blades Enterprise Centre, S2 4SU Sheffield, UK.

出版信息

Curr Pharmacol Rep. 2016;2(4):171-177. doi: 10.1007/s40495-016-0060-3. Epub 2016 Apr 5.

Abstract

Cardiac safety is an issue causing early terminations at various stages of drug development. Efforts are put into the elimination of false negatives as well as false positives resulting from the current testing paradigm. In silico approaches offer mathematical system and data description from the ion current, through cardiomyocytes level, up to incorporation of inter-individual variability at the population level. The article aims to review three main modelling and simulation approaches, i.e. "top-down" which refers to models built on the observed data, "bottom-up", which stands for a mechanistic description of human physiology, and "middle-out" which combines both strategies. Modelling and simulation is a well-established tool in the assessment of drug proarrhythmic potency with an impact on research and development as well as on regulatory decisions, and it is certainly here to stay. What is more, the shift to systems biology and physiology-based models makes the cardiac effect more predictable.

摘要

心脏安全性是导致药物研发各个阶段提前终止的一个问题。人们致力于消除当前测试模式产生的假阴性和假阳性结果。计算机模拟方法提供了从离子电流、心肌细胞水平到纳入群体水平个体间变异性的数学系统和数据描述。本文旨在综述三种主要的建模和模拟方法,即“自上而下”(指基于观测数据构建的模型)、“自下而上”(代表对人体生理学的机制性描述)和“中间向外”(结合了两种策略)。建模和模拟是评估药物促心律失常潜力的一种成熟工具,对研发以及监管决策都有影响,而且肯定会持续存在。此外,向基于系统生物学和生理学的模型转变使心脏效应更具可预测性。

相似文献

1
Top-down, Bottom-up and Middle-out Strategies for Drug Cardiac Safety Assessment via Modeling and Simulations.
Curr Pharmacol Rep. 2016;2(4):171-177. doi: 10.1007/s40495-016-0060-3. Epub 2016 Apr 5.
2
6
Humans Vary, So Cardiac Models Should Account for That Too!
Front Physiol. 2017 Sep 21;8:700. doi: 10.3389/fphys.2017.00700. eCollection 2017.
7
Recent developments in using mechanistic cardiac modelling for drug safety evaluation.
Drug Discov Today. 2016 Jun;21(6):924-38. doi: 10.1016/j.drudis.2016.02.003. Epub 2016 Feb 15.
9
Computational modeling for cardiac safety pharmacology analysis: Contribution of fibroblasts.
J Pharmacol Toxicol Methods. 2017 Sep;87:68-73. doi: 10.1016/j.vascn.2017.04.011. Epub 2017 Apr 26.

引用本文的文献

1
A Combination of Machine Learning and PBPK Modeling Approach for Pharmacokinetics Prediction of Small Molecules in Humans.
Pharm Res. 2024 Jul;41(7):1369-1379. doi: 10.1007/s11095-024-03725-y. Epub 2024 Jun 25.
2
Physiologically Based Pharmacokinetic Modeling of Extracellular Vesicles.
Biology (Basel). 2023 Aug 29;12(9):1178. doi: 10.3390/biology12091178.
3
Modelling the Tumour Microenvironment, but What Exactly Do We Mean by "Model"?
Cancers (Basel). 2023 Jul 26;15(15):3796. doi: 10.3390/cancers15153796.
7
Mechanistic Modelling Identifies and Addresses the Risks of Empiric Concentration-Guided Sorafenib Dosing.
Pharmaceuticals (Basel). 2021 Apr 21;14(5):389. doi: 10.3390/ph14050389.
8
Current Approaches and Techniques in Physiologically Based Pharmacokinetic (PBPK) Modelling of Nanomaterials.
Nanomaterials (Basel). 2020 Jun 29;10(7):1267. doi: 10.3390/nano10071267.
9
On the analysis of complex biological supply chains: From Process Systems Engineering to Quantitative Systems Pharmacology.
Comput Chem Eng. 2017 Dec 5;107:100-110. doi: 10.1016/j.compchemeng.2017.06.003. Epub 2017 Jun 3.
10
Physiologically based pharmacokinetic modeling of disposition and drug-drug interactions for valproic acid and divalproex.
Eur J Pharm Sci. 2018 Jan 1;111:465-481. doi: 10.1016/j.ejps.2017.10.009. Epub 2017 Oct 10.

本文引用的文献

2
Screening system for drug-induced arrhythmogenic risk combining a patch clamp and heart simulator.
Sci Adv. 2015 May 1;1(4):e1400142. doi: 10.1126/sciadv.1400142. eCollection 2015 May.
3
Modeling and Simulation Approaches for Cardiovascular Function and Their Role in Safety Assessment.
CPT Pharmacometrics Syst Pharmacol. 2015 Mar;4(3):e00018. doi: 10.1002/psp4.18. Epub 2015 Mar 11.
4
A New Perspective in the Field of Cardiac Safety Testing through the Comprehensive In Vitro Proarrhythmia Assay Paradigm.
J Biomol Screen. 2016 Jan;21(1):1-11. doi: 10.1177/1087057115594589. Epub 2015 Jul 13.
5
Implications of the IQ-CSRC Prospective Study: Time to Revise ICH E14.
Drug Saf. 2015 Sep;38(9):773-80. doi: 10.1007/s40264-015-0325-5.
9
A thorough QT study in the context of an uptitration regimen with selexipag, a selective oral prostacyclin receptor agonist.
Drug Des Devel Ther. 2014 Dec 17;9:175-85. doi: 10.2147/DDDT.S75565. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验