Suppr超能文献

从非生物材料生成最小生命系统并提高其进化能力。

Generating minimal living systems from non-living materials and increasing their evolutionary abilities.

作者信息

Rasmussen Steen, Constantinescu Adi, Svaneborg Carsten

机构信息

Center for Fundamental Living Technology (FLinT), Department for Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Center for Fundamental Living Technology (FLinT), Department for Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701). doi: 10.1098/rstb.2015.0440.

Abstract

We review lessons learned about evolutionary transitions from a bottom-up construction of minimal life. We use a particular systemic protocell design process as a starting point for exploring two fundamental questions: (i) how may minimal living systems emerge from non-living materials? and (ii) how may minimal living systems support increasingly more evolutionary richness? Under (i), we present what has been accomplished so far and discuss the remaining open challenges and their possible solutions. Under (ii), we present a design principle we have used successfully both for our computational and experimental protocellular investigations, and we conjecture how this design principle can be extended for enhancing the evolutionary potential for a wide range of systems.This article is part of the themed issue 'The major synthetic evolutionary transitions'.

摘要

我们回顾了从自下而上构建最小生命的过程中学到的关于进化转变的经验教训。我们以一种特定的系统原细胞设计过程为出发点,探索两个基本问题:(i)最小的生命系统如何从非生命物质中出现?以及(ii)最小的生命系统如何支持越来越丰富的进化?在(i)的情况下,我们介绍了到目前为止已经完成的工作,并讨论了剩余的开放挑战及其可能的解决方案。在(ii)的情况下,我们提出了一种我们在计算和实验原细胞研究中都成功使用过的设计原则,并推测如何扩展这一设计原则以增强广泛系统的进化潜力。本文是主题为“主要的合成进化转变”的特刊的一部分。

相似文献

1
Generating minimal living systems from non-living materials and increasing their evolutionary abilities.
Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701). doi: 10.1098/rstb.2015.0440.
2
Perspective: Protocells and the Path to Minimal Life.
J Mol Evol. 2024 Oct;92(5):530-538. doi: 10.1007/s00239-024-10197-6. Epub 2024 Sep 4.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
The origin of heredity in protocells.
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735). doi: 10.1098/rstb.2016.0419.
5
The teleological transitions in evolution: A Gántian view.
J Theor Biol. 2015 Sep 21;381:55-60. doi: 10.1016/j.jtbi.2015.04.007. Epub 2015 Apr 15.
6
The major synthetic evolutionary transitions.
Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701). doi: 10.1098/rstb.2016.0175.
7
Nature's lessons in design: nanomachines to scaffold, remodel and shape membrane compartments.
Phys Chem Chem Phys. 2015 Jun 28;17(24):15489-507. doi: 10.1039/c5cp00480b. Epub 2015 Mar 25.
8
Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation.
Proc Natl Acad Sci U S A. 2021 May 25;118(21). doi: 10.1073/pnas.2025054118.
10
Primordial membranes: more than simple container boundaries.
Curr Opin Chem Biol. 2017 Oct;40:78-86. doi: 10.1016/j.cbpa.2017.07.009. Epub 2017 Aug 10.

引用本文的文献

1
Public attitudes to potential synthetic cells applications: Pragmatic support and ethical acceptance.
PLoS One. 2025 Feb 27;20(2):e0319337. doi: 10.1371/journal.pone.0319337. eCollection 2025.
2
Protocells Either Synchronize or Starve.
Entropy (Basel). 2025 Feb 2;27(2):154. doi: 10.3390/e27020154.
3
Models of Protocells Undergoing Asymmetrical Division.
Entropy (Basel). 2024 Mar 26;26(4):281. doi: 10.3390/e26040281.
4
Mathematical modeling reveals spontaneous emergence of self-replication in chemical reaction systems.
J Biol Chem. 2018 Dec 7;293(49):18854-18863. doi: 10.1074/jbc.RA118.003795. Epub 2018 Oct 3.
6
The Conception of Synthetic Entities from a Personalist Perspective.
Sci Eng Ethics. 2019 Feb;25(1):97-111. doi: 10.1007/s11948-017-9994-z. Epub 2017 Oct 26.
7
The major synthetic evolutionary transitions.
Philos Trans R Soc Lond B Biol Sci. 2016 Aug 19;371(1701). doi: 10.1098/rstb.2016.0175.

本文引用的文献

1
Sequence selection by dynamical symmetry breaking in an autocatalytic binary polymer model.
Phys Rev E. 2017 Dec;96(6-1):062407. doi: 10.1103/PhysRevE.96.062407. Epub 2017 Dec 13.
2
Emergent chemical behavior in variable-volume protocells.
Life (Basel). 2015 Jan 13;5(1):181-211. doi: 10.3390/life5010181.
3
Growth and division in a dynamic protocell model.
Life (Basel). 2014 Dec 3;4(4):837-64. doi: 10.3390/life4040837.
4
Nanoscale Turing structures.
J Chem Phys. 2014 Sep 28;141(12):124106. doi: 10.1063/1.4895907.
5
Functionalization of fatty acid vesicles through newly synthesized bolaamphiphile-DNA conjugates.
Bioconjug Chem. 2014 Sep 17;25(9):1678-88. doi: 10.1021/bc500289u. Epub 2014 Sep 3.
7
Self-assembly of phosphate amphiphiles in mixtures of prebiotically plausible surfactants.
Astrobiology. 2014 Jun;14(6):462-72. doi: 10.1089/ast.2013.1111. Epub 2014 Jun 2.
8
Nonenzymatic template-directed RNA synthesis inside model protocells.
Science. 2013 Nov 29;342(6162):1098-100. doi: 10.1126/science.1241888.
9
Statistical physics of self-replication.
J Chem Phys. 2013 Sep 28;139(12):121923. doi: 10.1063/1.4818538.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验