Suppr超能文献

哺乳动物长链非编码基因中RNA聚合酶II启动子近端暂停

RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes.

作者信息

Bunch Heeyoun, Lawney Brian P, Burkholder Adam, Ma Duanduan, Zheng Xiaofeng, Motola Shmulik, Fargo David C, Levine Stuart S, Wang Yaoyu E, Hu Guang

机构信息

Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA.

Center for Cancer Computational Biology, Dana Farber Cancer Institute, Boston, MA 02130, USA.

出版信息

Genomics. 2016 Aug;108(2):64-77. doi: 10.1016/j.ygeno.2016.07.003. Epub 2016 Jul 16.

Abstract

Mammalian genomes encode a large number of non-coding RNAs (ncRNAs) that greatly exceed mRNA genes. While the physiological and pathological roles of ncRNAs have been increasingly understood, the mechanisms of regulation of ncRNA expression are less clear. Here, our genomic study has shown that a significant number of long non-coding RNAs (lncRNAs, >1000 nucleotides) harbor RNA polymerase II (Pol II) engaged with the transcriptional start site. A pausing and transcriptional elongation factor for protein-coding genes, tripartite motif-containing 28 (TRIM28) regulates the transcription of a subset of lncRNAs in mammalian cells. In addition, the majority of lncRNAs in human and murine cells regulated by Pol II promoter-proximal pausing appear to function in stimulus-inducible biological pathways. Our findings suggest an important role of Pol II pausing for the transcription of mammalian lncRNA genes.

摘要

哺乳动物基因组编码大量非编码RNA(ncRNA),其数量大大超过mRNA基因。虽然人们对ncRNA的生理和病理作用的了解越来越多,但ncRNA表达的调控机制尚不清楚。在这里,我们的基因组研究表明,大量长链非编码RNA(lncRNA,>1000个核苷酸)含有与转录起始位点结合的RNA聚合酶II(Pol II)。一种用于蛋白质编码基因的暂停和转录延伸因子,含三联体基序的28(TRIM28),可调节哺乳动物细胞中一部分lncRNA的转录。此外,在人和小鼠细胞中,受Pol II启动子近端暂停调控的大多数lncRNA似乎在刺激诱导的生物学途径中发挥作用。我们的研究结果表明,Pol II暂停在哺乳动物lncRNA基因转录中具有重要作用。

相似文献

1
RNA polymerase II promoter-proximal pausing in mammalian long non-coding genes.
Genomics. 2016 Aug;108(2):64-77. doi: 10.1016/j.ygeno.2016.07.003. Epub 2016 Jul 16.
2
TRIM28 regulates RNA polymerase II promoter-proximal pausing and pause release.
Nat Struct Mol Biol. 2014 Oct;21(10):876-83. doi: 10.1038/nsmb.2878. Epub 2014 Aug 31.
3
Gene regulation of mammalian long non-coding RNA.
Mol Genet Genomics. 2018 Feb;293(1):1-15. doi: 10.1007/s00438-017-1370-9. Epub 2017 Sep 11.
4
P-TEFb Regulates Transcriptional Activation in Non-coding RNA Genes.
Front Genet. 2019 Apr 24;10:342. doi: 10.3389/fgene.2019.00342. eCollection 2019.
5
Transcription pausing regulates mouse embryonic stem cell differentiation.
Stem Cell Res. 2017 Dec;25:250-255. doi: 10.1016/j.scr.2017.11.012. Epub 2017 Nov 16.
6
Noncoding RNAs: Regulators of the Mammalian Transcription Machinery.
J Mol Biol. 2016 Jun 19;428(12):2652-2659. doi: 10.1016/j.jmb.2016.02.019. Epub 2016 Feb 23.
8
Genetic and genomic analyses of RNA polymerase II-pausing factor in regulation of mammalian transcription and cell growth.
J Biol Chem. 2011 Oct 21;286(42):36248-57. doi: 10.1074/jbc.M111.269167. Epub 2011 Aug 24.
9
Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types.
Genome Biol. 2016 Jun 3;17(1):120. doi: 10.1186/s13059-016-0984-2.
10
Promoter-proximal pausing of RNA polymerase II: an opportunity to regulate gene transcription.
J Recept Signal Transduct Res. 2010 Feb;30(1):31-42. doi: 10.3109/10799890903517921.

引用本文的文献

2
Multifaceted role of in health and disease.
MedComm (2020). 2024 Nov 11;5(11):e790. doi: 10.1002/mco2.790. eCollection 2024 Nov.
4
Long non-coding RNAs: roles in cellular stress responses and epigenetic mechanisms regulating chromatin.
Nucleus. 2024 Dec;15(1):2350180. doi: 10.1080/19491034.2024.2350180. Epub 2024 May 22.
6
ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes.
Nat Commun. 2023 Dec 14;14(1):8341. doi: 10.1038/s41467-023-44089-y.
8
A novel role of TRIM28 B box domain in L1 retrotransposition and ORF2p-mediated cDNA synthesis.
Nucleic Acids Res. 2023 May 22;51(9):4429-4450. doi: 10.1093/nar/gkad247.
9
Integrator is a global promoter-proximal termination complex.
Mol Cell. 2023 Feb 2;83(3):416-427. doi: 10.1016/j.molcel.2022.11.012. Epub 2023 Jan 11.
10
The Regulatory Mechanisms and Clinical Significance of Lnc SNHG4 in Cancer.
Curr Pharm Des. 2022;28(44):3563-3571. doi: 10.2174/1381612829666221121161950.

本文引用的文献

2
KAP1 Recruitment of the 7SK snRNP Complex to Promoters Enables Transcription Elongation by RNA Polymerase II.
Mol Cell. 2016 Jan 7;61(1):39-53. doi: 10.1016/j.molcel.2015.11.004. Epub 2015 Dec 24.
3
Transcriptional elongation requires DNA break-induced signalling.
Nat Commun. 2015 Dec 16;6:10191. doi: 10.1038/ncomms10191.
4
Small ncRNA Expression-Profiling of Blood from Hemophilia A Patients Identifies miR-1246 as a Potential Regulator of Factor 8 Gene.
PLoS One. 2015 Jul 15;10(7):e0132433. doi: 10.1371/journal.pone.0132433. eCollection 2015.
5
The Mediator complex: a central integrator of transcription.
Nat Rev Mol Cell Biol. 2015 Mar;16(3):155-66. doi: 10.1038/nrm3951. Epub 2015 Feb 18.
6
Ligand-dependent enhancer activation regulated by topoisomerase-I activity.
Cell. 2015 Jan 29;160(3):367-80. doi: 10.1016/j.cell.2014.12.023. Epub 2015 Jan 22.
8
TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells.
Cell Rep. 2015 Jan 6;10(1):20-8. doi: 10.1016/j.celrep.2014.12.004. Epub 2014 Dec 24.
10
Tyrosine phosphorylation of histone H2A by CK2 regulates transcriptional elongation.
Nature. 2014 Dec 11;516(7530):267-71. doi: 10.1038/nature13736. Epub 2014 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验