Rai Amit, Umashankar Shivshankar, Rai Megha, Kiat Lim Boon, Bing Johanan Aow Shao, Swarup Sanjay
Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543 (A.R., S.U., M.R., L.B.K., J.A.S.B., S.S.);Synthetic Biology Research Consortium (A.R., S.S.) and Singapore Centre for Environmental Life Science Engineering (S.U., S.S.), National University of Singapore, Singapore 117456;NUS Environmental Research Institute, National University of Singapore, Singapore 117411 (S.U., M.R., L.B.K., S.S.); andSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 (S.S.).
Metabolites Biology Lab, Department of Biological Sciences, National University of Singapore, Singapore 117543 (A.R., S.U., M.R., L.B.K., J.A.S.B., S.S.);Synthetic Biology Research Consortium (A.R., S.S.) and Singapore Centre for Environmental Life Science Engineering (S.U., S.S.), National University of Singapore, Singapore 117456;NUS Environmental Research Institute, National University of Singapore, Singapore 117411 (S.U., M.R., L.B.K., S.S.); andSingapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551 (S.S.)
Plant Physiol. 2016 Aug;171(4):2499-515. doi: 10.1104/pp.16.00421. Epub 2016 Jul 18.
Secondary metabolites play a key role in coordinating ecology and defense strategies of plants. Diversity of these metabolites arises by conjugation of core structures with diverse chemical moieties, such as sugars in glycosylation. Active pools of phytohormones, including those involved in plant stress response, are also regulated by glycosylation. While much is known about the enzymes involved in glycosylation, we know little about their regulation or coordination with other processes. We characterized the flavonoid pathway transcription factor TRANSPARENT TESTA8 (TT8) in Arabidopsis (Arabidopsis thaliana) using an integrative omics strategy. This approach provides a systems-level understanding of the cellular machinery that is used to generate metabolite diversity by glycosylation. Metabolomics analysis of TT8 loss-of-function and inducible overexpression lines showed that TT8 coordinates glycosylation of not only flavonoids, but also nucleotides, thus implicating TT8 in regulating pools of activated nucleotide sugars. Transcriptome and promoter network analyses revealed that the TT8 regulome included sugar transporters, proteins involved in sugar binding and sequestration, and a number of carbohydrate-active enzymes. Importantly, TT8 affects stress response, along with brassinosteroid and jasmonic acid biosynthesis, by directly binding to the promoters of key genes of these processes. This combined effect on metabolite glycosylation and stress hormones by TT8 inducible overexpression led to significant increase in tolerance toward multiple abiotic and biotic stresses. Conversely, loss of TT8 leads to increased sensitivity to these stresses. Thus, the transcription factor TT8 is an integrator of secondary metabolism and stress response. These findings provide novel approaches to improve broad-spectrum stress tolerance.
次生代谢产物在协调植物的生态和防御策略中发挥着关键作用。这些代谢产物的多样性源于核心结构与多种化学基团的结合,例如糖基化中的糖类。包括参与植物应激反应的植物激素在内,其活性库也受到糖基化的调控。虽然我们对参与糖基化的酶了解很多,但对它们的调控或与其他过程的协调却知之甚少。我们利用综合组学策略对拟南芥中的类黄酮途径转录因子透明种皮8(TT8)进行了表征。这种方法提供了对用于通过糖基化产生代谢物多样性的细胞机制的系统层面理解。对TT8功能缺失和诱导过表达系的代谢组学分析表明,TT8不仅协调类黄酮的糖基化,还协调核苷酸的糖基化,因此表明TT8参与调节活化核苷酸糖的库。转录组和启动子网络分析表明,TT8调控组包括糖转运蛋白以及参与糖结合和隔离的蛋白质,还有许多碳水化合物活性酶。重要的是,TT8通过直接结合这些过程关键基因的启动子来影响应激反应以及油菜素内酯和茉莉酸的生物合成。TT8诱导过表达对代谢物糖基化和应激激素的这种综合作用导致对多种非生物和生物胁迫的耐受性显著增加。相反,TT8的缺失导致对这些胁迫的敏感性增加。因此,转录因子TT8是次生代谢和应激反应的整合者。这些发现为提高广谱胁迫耐受性提供了新方法。