Suppr超能文献

调控细胞形状的最小Rho-GTPase信号通路分析

Analysis of a minimal Rho-GTPase circuit regulating cell shape.

作者信息

Holmes William R, Edelstein-Keshet Leah

机构信息

Department of Physics and Astronomy,Vanderbilt University, Nashville, TN, USA.

Department of Mathematics, University of British Columbia, Vancouver, Canada.

出版信息

Phys Biol. 2016 Jul 19;13(4):046001. doi: 10.1088/1478-3975/13/4/046001.

Abstract

Networks of Rho-family GTPases regulate eukaryotic cell polarization and motility by controlling assembly and contraction of the cytoskeleton. The mutually inhibitory Rac-Rho circuit is emerging as a central, regulatory hub that can affect the shape and motility phenotype of eukaryotic cells. Recent experimental manipulation of the amounts of Rac and Rho or their regulators (guanine nucleotide-exchange factors, GTPase-activating proteins, guanine nucleotide dissociation inhibitors) have been shown to bias the prevalence of these different states and promote transitions between them. Here we show that part of this data can be understood in terms of inherent Rac-Rho mutually inhibitory dynamics. We analyze a spatio-temporal mathematical model of Rac-Rho dynamics to produce a detailed set of predictions of how parameters such as GTPase rates of activation and total amounts affect cell decisions (such as Rho-dominated contraction, Rac-dominated spreading, and spatially segregated Rac-Rho polarization). We find that in some parameter regimes, a cell can take on any of these three fates depending on its environment or stimuli. We also predict how experimental manipulations (corresponding to parameter variations) can affect cell shapes observed. Our methods are based on local perturbation analysis (a kind of nonlinear stability analysis), and an approximation of nonlinear feedback by sharp switches. We compare the Rac-Rho model to an even simpler single-GTPase ('wave-pinning') model and demonstrate that the overall behavior is inherent to GTPase properties, rather than stemming solely from network topology.

摘要

Rho家族GTP酶网络通过控制细胞骨架的组装和收缩来调节真核细胞的极化和运动。相互抑制的Rac-Rho回路正逐渐成为一个核心调控枢纽,它能够影响真核细胞的形态和运动表型。最近对Rac和Rho及其调节因子(鸟嘌呤核苷酸交换因子、GTP酶激活蛋白、鸟嘌呤核苷酸解离抑制剂)数量的实验操作已表明,这些不同状态的发生率会出现偏差,并促进它们之间的转变。在此我们表明,部分此类数据可以根据Rac-Rho固有的相互抑制动力学来理解。我们分析了Rac-Rho动力学的时空数学模型,以得出一组详细的预测,即诸如GTP酶激活速率和总量等参数如何影响细胞决策(如Rho主导的收缩、Rac主导的铺展以及空间上分离的Rac-Rho极化)。我们发现,在某些参数范围内,细胞可以根据其环境或刺激呈现这三种命运中的任何一种。我们还预测了实验操作(对应于参数变化)如何影响所观察到的细胞形状。我们的方法基于局部扰动分析(一种非线性稳定性分析)以及通过尖锐开关对非线性反馈的近似。我们将Rac-Rho模型与一个更简单的单GTP酶(“波钉扎”)模型进行比较,并证明总体行为是GTP酶特性所固有的,而非仅仅源于网络拓扑结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验