1 KU Leuven, Group Biomedical Sciences, Movement Control and Neuroplasticity Research Group, 3001 Leuven, Belgium
1 KU Leuven, Group Biomedical Sciences, Movement Control and Neuroplasticity Research Group, 3001 Leuven, Belgium 2 BrainCTR, Lilid bvba, Diest, Belgium.
Brain. 2016 Sep;139(Pt 9):2469-85. doi: 10.1093/brain/aww177. Epub 2016 Jul 19.
Years following the insult, patients with traumatic brain injury often experience persistent motor control problems, including bimanual coordination deficits. Previous studies revealed that such deficits are related to brain structural white and grey matter abnormalities. Here, we assessed, for the first time, cerebral functional activation patterns during bimanual movement preparation and performance in patients with traumatic brain injury, using functional magnetic resonance imaging. Eighteen patients with moderate-to-severe traumatic brain injury (10 females; aged 26.3 years, standard deviation = 5.2; age range: 18.4-34.6 years) and 26 healthy young adults (15 females; aged 23.6 years, standard deviation = 3.8; age range: 19.5-33 years) performed a complex bimanual tracking task, divided into a preparation (2 s) and execution (9 s) phase, and executed either in the presence or absence of augmented visual feedback. Performance on the bimanual tracking task, expressed as the average target error, was impaired for patients as compared to controls (P < 0.001) and for trials in the absence as compared to the presence of augmented visual feedback (P < 0.001). At the cerebral level, movement preparation was characterized by reduced neural activation in the patient group relative to the control group in frontal (bilateral superior frontal gyrus, right dorsolateral prefrontal cortex), parietal (left inferior parietal lobe) and occipital (right striate and extrastriate visual cortex) areas (P's < 0.05). During the execution phase, however, the opposite pattern emerged, i.e. traumatic brain injury patients showed enhanced activations compared with controls in frontal (left dorsolateral prefrontal cortex, left lateral anterior prefrontal cortex, and left orbitofrontal cortex), parietal (bilateral inferior parietal lobe, bilateral superior parietal lobe, right precuneus, right primary somatosensory cortex), occipital (right striate and extrastriate visual cortices), and subcortical (left cerebellum crus II) areas (P's < 0.05). Moreover, a significant interaction effect between Feedback Condition and Group in the primary motor area (bilaterally) (P < 0.001), the cerebellum (left) (P < 0.001) and caudate (left) (P < 0.05), revealed that controls showed less overlap of activation patterns accompanying the two feedback conditions than patients with traumatic brain injury (i.e. decreased neural differentiation). In sum, our findings point towards poorer predictive control in traumatic brain injury patients in comparison to controls. Moreover, irrespective of the feedback condition, overactivations were observed in traumatically brain injured patients during movement execution, pointing to more controlled processing of motor task performance.
在遭受侮辱多年后,创伤性脑损伤患者经常出现持续的运动控制问题,包括双手协调缺陷。先前的研究表明,这些缺陷与大脑结构的白质和灰质异常有关。在这里,我们首次使用功能磁共振成像评估了创伤性脑损伤患者在进行双手运动准备和执行期间的大脑功能激活模式。18 名中度至重度创伤性脑损伤患者(10 名女性;年龄 26.3 岁,标准差=5.2;年龄范围:18.4-34.6 岁)和 26 名健康年轻成年人(15 名女性;年龄 23.6 岁,标准差=3.8;年龄范围:19.5-33 岁)执行了一项复杂的双手跟踪任务,分为准备(2 秒)和执行(9 秒)阶段,并在存在或不存在增强视觉反馈的情况下执行。双手跟踪任务的表现,以平均目标误差表示,患者组的表现不如对照组(P < 0.001),在没有增强视觉反馈的情况下的表现不如有增强视觉反馈的情况(P < 0.001)。在大脑水平上,与对照组相比,患者组在额叶(双侧额上回、右侧背外侧前额叶皮质)、顶叶(左侧顶下小叶)和枕叶(右侧纹状和纹外视觉皮质)区域的运动准备阶段表现出减少的神经激活(P < 0.05)。然而,在执行阶段,出现了相反的模式,即与对照组相比,创伤性脑损伤患者在额叶(左侧背外侧前额叶皮质、左侧额前外侧皮质和左侧眶额皮质)、顶叶(双侧顶下小叶、双侧顶上小叶、右侧楔前叶、右侧初级体感皮质)、枕叶(右侧纹状和纹外视觉皮质)和皮质下(左侧小脑半球 II 叶)区域表现出增强的激活(P < 0.05)。此外,在初级运动区(双侧)(P < 0.001)、小脑(左侧)(P < 0.001)和尾状核(左侧)(P < 0.05)中,反馈条件和组之间的显著交互作用表明,与创伤性脑损伤患者相比,对照组在两种反馈条件下的激活模式重叠较少(即神经分化减少)。总之,我们的发现表明,与对照组相比,创伤性脑损伤患者的预测控制能力较差。此外,无论反馈条件如何,创伤性脑损伤患者在执行运动时都会出现过度激活,这表明他们对运动任务表现的处理更加受控。