Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin Road, Suite 1104, Durham, NC 27705, USA.
Center for Predictive Medicine, Duke Clinical Research Institute, Durham, NC, USA.
Eur Heart J. 2017 Jun 14;38(23):1805-1814. doi: 10.1093/eurheartj/ehw302.
Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived from our institution's electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning.
风险预测在临床心脏病学研究中起着重要作用。传统上,大多数风险模型都是基于回归模型。虽然这些统计方法有用且稳健,但它们仅限于使用少数以相同方式在每个人身上以及在整个范围内都起作用的预测因子。本综述的目的是说明如何使用机器学习方法来开发风险预测模型。机器学习方法通常被表示为黑盒方法,旨在解决数据分析中出现的特定挑战,而这些挑战无法通过典型的回归方法很好地解决。为了说明这些挑战以及不同方法如何解决这些挑战,我们考虑尝试预测急性心肌梗死诊断后的死亡率。我们使用来自我们机构电子健康记录的数据和关于 13 个常规测量实验室标志物的摘要数据。我们逐步介绍在对这些数据进行建模时出现的不同挑战,然后引入不同的机器学习方法。最后,我们讨论了机器学习方法应用中的一些常见问题,包括调整参数、损失函数、变量重要性和缺失数据。总的来说,本综述旨在为从事风险建模的人员提供一个介绍,以了解机器学习这一广泛的领域。
Value Health. 2019-3-15
BMC Med Inform Decis Mak. 2019-11-6
Cell Biochem Biophys. 2025-8-30
Alzheimers Res Ther. 2025-8-20
Front Aging Neurosci. 2025-7-31
Front Med (Lausanne). 2025-6-16
J Am Med Inform Assoc. 2017-1
Ann Intern Med. 2015-12-1
Proc Natl Acad Sci U S A. 2015-6-23