文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超越心血管风险预测中的回归技术:应用机器学习解决分析挑战。

Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.

机构信息

Department of Biostatistics and Bioinformatics, Duke University, 2424 Erwin Road, Suite 1104, Durham, NC 27705, USA.

Center for Predictive Medicine, Duke Clinical Research Institute, Durham, NC, USA.

出版信息

Eur Heart J. 2017 Jun 14;38(23):1805-1814. doi: 10.1093/eurheartj/ehw302.


DOI:10.1093/eurheartj/ehw302
PMID:27436868
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5837244/
Abstract

Risk prediction plays an important role in clinical cardiology research. Traditionally, most risk models have been based on regression models. While useful and robust, these statistical methods are limited to using a small number of predictors which operate in the same way on everyone, and uniformly throughout their range. The purpose of this review is to illustrate the use of machine-learning methods for development of risk prediction models. Typically presented as black box approaches, most machine-learning methods are aimed at solving particular challenges that arise in data analysis that are not well addressed by typical regression approaches. To illustrate these challenges, as well as how different methods can address them, we consider trying to predicting mortality after diagnosis of acute myocardial infarction. We use data derived from our institution's electronic health record and abstract data on 13 regularly measured laboratory markers. We walk through different challenges that arise in modelling these data and then introduce different machine-learning approaches. Finally, we discuss general issues in the application of machine-learning methods including tuning parameters, loss functions, variable importance, and missing data. Overall, this review serves as an introduction for those working on risk modelling to approach the diffuse field of machine learning.

摘要

风险预测在临床心脏病学研究中起着重要作用。传统上,大多数风险模型都是基于回归模型。虽然这些统计方法有用且稳健,但它们仅限于使用少数以相同方式在每个人身上以及在整个范围内都起作用的预测因子。本综述的目的是说明如何使用机器学习方法来开发风险预测模型。机器学习方法通常被表示为黑盒方法,旨在解决数据分析中出现的特定挑战,而这些挑战无法通过典型的回归方法很好地解决。为了说明这些挑战以及不同方法如何解决这些挑战,我们考虑尝试预测急性心肌梗死诊断后的死亡率。我们使用来自我们机构电子健康记录的数据和关于 13 个常规测量实验室标志物的摘要数据。我们逐步介绍在对这些数据进行建模时出现的不同挑战,然后引入不同的机器学习方法。最后,我们讨论了机器学习方法应用中的一些常见问题,包括调整参数、损失函数、变量重要性和缺失数据。总的来说,本综述旨在为从事风险建模的人员提供一个介绍,以了解机器学习这一广泛的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fb/5837244/d7b7c8be7761/ehw30204.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fb/5837244/b7277daf4568/ehw30201.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fb/5837244/e9dde0321113/ehw30202.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fb/5837244/900eaf227031/ehw30203.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fb/5837244/d7b7c8be7761/ehw30204.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fb/5837244/b7277daf4568/ehw30201.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fb/5837244/e9dde0321113/ehw30202.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fb/5837244/900eaf227031/ehw30203.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39fb/5837244/d7b7c8be7761/ehw30204.jpg

相似文献

[1]
Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges.

Eur Heart J. 2017-6-14

[2]
Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.

Artif Intell Med. 2019-7-26

[3]
Bayesian Networks for Risk Prediction Using Real-World Data: A Tool for Precision Medicine.

Value Health. 2019-3-15

[4]
A data-driven approach to predicting diabetes and cardiovascular disease with machine learning.

BMC Med Inform Decis Mak. 2019-11-6

[5]
Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants.

PLoS One. 2019-5-15

[6]
Rise of the machines? Machine learning approaches and mental health: opportunities and challenges.

Br J Psychiatry. 2018-9

[7]
A Naive Bayes machine learning approach to risk prediction using censored, time-to-event data.

Stat Med. 2015-9-20

[8]
Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study.

PLoS Med. 2018-11-27

[9]
Accurate Prediction of Coronary Heart Disease for Patients With Hypertension From Electronic Health Records With Big Data and Machine-Learning Methods: Model Development and Performance Evaluation.

JMIR Med Inform. 2020-7-6

[10]
Decision curve analysis confirms higher clinical utility of multi-domain versus single-domain prediction models in patients with open abdomen treatment for peritonitis.

BMC Med Inform Decis Mak. 2023-4-6

引用本文的文献

[1]
Harnessing Statistical and Machine Learning Approaches to Analyze Oxidized LDL in Clinical Research.

Cell Biochem Biophys. 2025-8-30

[2]
Development and Validation of a Machine Learning Model for Early Prediction of Acute Kidney Injury in Neurocritical Care: A Comparative Analysis of XGBoost, GBM, and Random Forest Algorithms.

Diagnostics (Basel). 2025-8-17

[3]
Diagnostic Prediction Models for Primary Care, Based on AI and Electronic Health Records: Systematic Review.

JMIR Med Inform. 2025-8-22

[4]
Optimizing timing and cost-effective use of plasma biomarkers in Alzheimer's disease.

Alzheimers Res Ther. 2025-8-20

[5]
Construction of a predictive model for cognitive impairment among older adults in Northwest China.

Front Aging Neurosci. 2025-7-31

[6]
Development and multi-cohort validation of a machine learning-based simplified frailty assessment tool for clinical risk prediction.

J Transl Med. 2025-8-15

[7]
SurgeryLSTM: a time-aware neural model for accurate and explainable length of stay prediction after spine surgery.

JAMIA Open. 2025-7-25

[8]
Analysis of aPTT predictors after unfractionated heparin administration in intensive care units using machine learning models.

PLoS One. 2025-7-21

[9]
Data-driven prediction of cardiovascular and cerebrovascular diseases in a nationwide study.

Sci Rep. 2025-7-2

[10]
Deep learning for enhanced prediction of diabetic retinopathy: a comparative study on the diabetes complications data set.

Front Med (Lausanne). 2025-6-16

本文引用的文献

[1]
Predicting mortality over different time horizons: which data elements are needed?

J Am Med Inform Assoc. 2017-1

[2]
Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review.

J Am Med Inform Assoc. 2017-1

[3]
Normal-Weight Central Obesity: Implications for Total and Cardiovascular Mortality.

Ann Intern Med. 2015-12-1

[4]
Testing the Relative Performance of Data Adaptive Prediction Algorithms: A Generalized Test of Conditional Risk Differences.

Int J Biostat. 2016-5-1

[5]
Review and evaluation of penalised regression methods for risk prediction in low-dimensional data with few events.

Stat Med. 2016-3-30

[6]
Effects of Different Missing Data Imputation Techniques on the Performance of Undiagnosed Diabetes Risk Prediction Models in a Mixed-Ancestry Population of South Africa.

PLoS One. 2015-9-25

[7]
How to develop a more accurate risk prediction model when there are few events.

BMJ. 2015-8-11

[8]
Statistical learning and selective inference.

Proc Natl Acad Sci U S A. 2015-6-23

[9]
Relation of black race between high density lipoprotein cholesterol content, high density lipoprotein particles and coronary events (from the Dallas Heart Study).

Am J Cardiol. 2015-4-1

[10]
Transparent reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement.

J Clin Epidemiol. 2015-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索