Suppr超能文献

决策曲线分析证实,在接受开放性腹部治疗的腹膜炎患者中,多领域预测模型比单领域预测模型具有更高的临床实用性。

Decision curve analysis confirms higher clinical utility of multi-domain versus single-domain prediction models in patients with open abdomen treatment for peritonitis.

机构信息

Department of Anaesthesiology and Pain Medicine, Bern University Hospital, Inselspital, University of Bern, Freiburgstrasse 10, Bern, 3010, Switzerland.

Department of Anaesthesiology, Amsterdam University Medical Centres, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.

出版信息

BMC Med Inform Decis Mak. 2023 Apr 6;23(1):63. doi: 10.1186/s12911-023-02156-w.

Abstract

BACKGROUND

Prediction modelling increasingly becomes an important risk assessment tool in perioperative systems approaches, e.g. in complex patients with open abdomen treatment for peritonitis. In this population, combining predictors from multiple medical domains (i.e. demographical, physiological and surgical variables) outperforms the prediction capabilities of single-domain prediction models. However, the benefit of these prediction models for clinical decision-making remains to be investigated. We therefore examined the clinical utility of mortality prediction models in patients suffering from peritonitis with a decision curve analysis.

METHODS

In this secondary analysis of a large dataset, a traditional logistic regression approach, three machine learning methods and a stacked ensemble were employed to examine the predictive capability of demographic, physiological and surgical variables in predicting mortality under open abdomen treatment for peritonitis. Calibration was examined with calibration belts and predictive performance was assessed with the area both under the receiver operating characteristic curve (AUROC) and under the precision recall curve (AUPRC) and with the Brier Score. Clinical utility of the prediction models was examined by means of a decision curve analysis (DCA) within a treatment threshold range of interest of 0-30%, where threshold probabilities are traditionally defined as the minimum probability of disease at which further intervention would be warranted.

RESULTS

Machine learning methods supported available evidence of a higher prediction performance of a multi- versus single-domain prediction models. Interestingly, their prediction performance was similar to a logistic regression model. The DCA demonstrated that the overall net benefit is largest for a multi-domain prediction model and that this benefit is larger compared to the default "treat all" strategy only for treatment threshold probabilities above about 10%. Importantly, the net benefit for low threshold probabilities is dominated by physiological predictors: surgical and demographics predictors provide only secondary decision-analytic benefit.

CONCLUSIONS

DCA provides a valuable tool to compare single-domain and multi-domain prediction models and demonstrates overall higher decision-analytic value of the latter. Importantly, DCA provides a means to clinically differentiate the risks associated with each of these domains in more depth than with traditional performance metrics and highlighted the importance of physiological predictors for conservative intervention strategies for low treatment thresholds. Further, machine learning methods did not add significant benefit either in prediction performance or decision-analytic utility compared to logistic regression in these data.

摘要

背景

预测模型在围手术期系统方法中越来越成为一种重要的风险评估工具,例如在患有开放性腹部的腹膜炎患者的复杂病例中。在这类人群中,结合来自多个医学领域的预测因子(即人口统计学、生理学和手术变量)的预测能力优于单个领域预测模型。然而,这些预测模型在临床决策中的益处仍有待研究。因此,我们通过决策曲线分析来研究患有腹膜炎且接受开放性腹部治疗的患者的死亡率预测模型的临床实用性。

方法

在这项大型数据集的二次分析中,采用传统的逻辑回归方法、三种机器学习方法和堆叠集成方法来检查人口统计学、生理学和手术变量在预测腹膜炎接受开放性腹部治疗的死亡率方面的预测能力。使用校准带检查校准情况,并使用接收者操作特征曲线下的面积(AUROC)和精度召回曲线下的面积(AUPRC)以及 Brier 评分评估预测性能。通过在感兴趣的治疗阈值范围内(0-30%)进行决策曲线分析(DCA)来检查预测模型的临床实用性,其中阈值概率通常定义为需要进一步干预的疾病的最小概率。

结果

机器学习方法支持多领域预测模型比单领域预测模型具有更高预测性能的现有证据。有趣的是,它们的预测性能与逻辑回归模型相似。DCA 表明,多领域预测模型的总体净收益最大,并且仅当治疗阈值概率高于约 10%时,这种收益才大于默认的“治疗所有”策略。重要的是,低阈值概率的净收益主要由生理学预测因子决定:手术和人口统计学预测因子仅提供次要的决策分析收益。

结论

DCA 提供了一种有价值的工具,可以比较单领域和多领域预测模型,并证明后者具有更高的决策分析价值。重要的是,DCA 提供了一种临床方法,可以比传统性能指标更深入地区分这些领域中的每一个领域相关的风险,并强调了生理学预测因子在低治疗阈值的保守干预策略中的重要性。此外,在这些数据中,与逻辑回归相比,机器学习方法在预测性能或决策分析实用性方面均未提供显著优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9a9/10080749/9d758ebc3054/12911_2023_2156_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验