Department of Surgery, University of Florida College of Medicine-Jacksonville.
Department of Medicine, St Luke's Mid America Heart Institute, Kansas City, Missouri.
JAMA Cardiol. 2016 Apr 1;1(1):46-52. doi: 10.1001/jamacardio.2015.0326.
Patient selection for transcatheter aortic valve replacement (TAVR) should include assessment of the risks of TAVR compared with surgical aortic valve replacement (SAVR). Existing SAVR risk models accurately predict the risks for the population undergoing SAVR, but comparable models to predict risk for patients undergoing TAVR are currently not available and should be derived from a population that underwent TAVR.
To use a national population of patients undergoing TAVR to develop a statistical model that will predict in-hospital mortality after TAVR.
DESIGN, SETTING, AND PARTICIPANTS: Patient data were obtained from the Society of Thoracic Surgeons/American College of Cardiology Transcatheter Valve Therapy (STS/ACC TVT) Registry. The model was developed from 13 718 consecutive US patients undergoing TAVR in centers participating in the STS/ACC TVT Registry from November 1, 2011, to February 28, 2014. Validation was conducted using 6868 records of consecutive patients undergoing TAVR from March 1 to October 8, 2014. Covariates were selected through a process of expert opinion and statistical analysis. The association between in-hospital mortality and baseline covariates was estimated using logistic regression. The final set of predictors was selected via stepwise variable selection. Data were collected and analyzed from November 1, 2011, to February 28, 2014.
In-hospital TAVR mortality.
The development sample included 13 718 patient records from 265 participant sites (of 13 672 with data available, 6680 men [48.9%]; 6992 women [51.1%]; mean [SD] age, 82.1 [8.3] years). The final validation cohort included 6868 patients from 314 participating centers (3554 men [51.7%]; 3314 women [48.3%]; mean [SD] age, 81.6 [8.8] years). In-hospital mortality occurred in 730 patients (5.3%). The C statistic for discrimination was 0.67 (95% CI, 0.65-0.69) in the development group and 0.66 (95% CI, 0.62-0.69) in the validation group. The final model covariates (reported as odds ratios; 95% CIs) were age (1.13; 1.06-1.20), glomerular filtration rate per 5-U increments (0.93; 0.91-0.95), hemodialysis (3.25; 2.42-4.37), New York Heart Association functional class IV (1.25; 1.03-1.52), severe chronic lung disease (1.67; 1.35-2.05), nonfemoral access site (1.96; 1.65- 2.33), and procedural acuity categories 2 (1.57; 1.20-2.05), 3 (2.70; 2.05-3.55), and 4 (3.34; 1.59-7.02). Calibration analysis demonstrated no significant difference between the model (predicted vs observed) calibration line (-0.18 and 0.97 for intercept and slope, respectively) compared with the ideal calibration line.
Data from the STS/ACC TVT Registry have been used to develop a predictive model of in-hospital mortality for patients undergoing TAVR. Validation based on a population of patient records not used in model development demonstrates discrimination and calibration indices that are more favorable than other models used in populations with TAVR. This model should be a valuable adjunct for patient counseling, local quality improvement, and national monitoring for appropriateness of selection of patients for TAVR.
经导管主动脉瓣置换术(TAVR)的患者选择应包括评估 TAVR 与外科主动脉瓣置换术(SAVR)相比的风险。现有的 SAVR 风险模型可以准确预测接受 SAVR 治疗的人群的风险,但目前尚无可用于预测接受 TAVR 治疗的患者风险的类似模型,这些模型应从接受 TAVR 的人群中得出。
利用接受 TAVR 的全国患者人群,开发一种可预测 TAVR 后院内死亡率的统计模型。
设计、地点和参与者:从胸外科医师协会/美国心脏病学会经导管瓣膜治疗(STS/ACC TVT)登记处获取患者数据。该模型是在 2011 年 11 月 1 日至 2014 年 2 月 28 日期间,从参与 STS/ACC TVT 登记处的美国中心接受 TAVR 的 13718 例连续患者中开发的。使用 2014 年 3 月 1 日至 10 月 8 日连续接受 TAVR 的 6868 例患者记录进行验证。通过专家意见和统计分析选择协变量。使用逻辑回归估计院内死亡率与基线协变量之间的关联。通过逐步变量选择选择最终的预测因素集。数据于 2011 年 11 月 1 日至 2014 年 2 月 28 日收集和分析。
TAVR 术后院内死亡率。
开发样本包括来自 265 个参与地点的 13718 例患者记录(在有数据的 13672 例患者中,6680 例为男性[48.9%];6992 例为女性[51.1%];平均[标准差]年龄为 82.1[8.3]岁)。最终验证队列包括来自 314 个参与中心的 6868 例患者(3554 例男性[51.7%];3314 例女性[48.3%];平均[标准差]年龄为 81.6[8.8]岁)。730 例患者(5.3%)发生院内死亡。在开发组中的判别 C 统计量为 0.67(95%CI,0.65-0.69),在验证组中的判别 C 统计量为 0.66(95%CI,0.62-0.69)。最终模型的协变量(报告为优势比;95%CI)为年龄(1.13;1.06-1.20)、肾小球滤过率每增加 5-U(0.93;0.91-0.95)、血液透析(3.25;2.42-4.37)、纽约心脏病协会功能分级 IV(1.25;1.03-1.52)、严重慢性肺部疾病(1.67;1.35-2.05)、非股动脉入路部位(1.96;1.65-2.33)以及手术难度分类 2(1.57;1.20-2.05)、3(2.70;2.05-3.55)和 4(3.34;1.59-7.02)。校准分析表明,模型(预测与观察)校准线与理想校准线之间无显著差异(截距和斜率分别为-0.18 和 0.97)。
STS/ACC TVT 登记处的数据已用于开发接受 TAVR 的患者院内死亡率预测模型。基于未用于模型开发的患者记录人群进行验证,显示出比用于接受 TAVR 的人群的其他模型更好的判别和校准指数。该模型应为患者咨询、当地质量改进和全国监测 TAVR 选择的适宜性提供有价值的辅助。