Suppr超能文献

针对重症监护患者的快速且可解释的死亡风险评分

Fast and interpretable mortality risk scores for critical care patients.

作者信息

Zhu Chloe Qinyu, Tian Muhang, Semenova Lesia, Liu Jiachang, Xu Jack, Scarpa Joseph, Rudin Cynthia

机构信息

Department of Computer Science, Duke University, Durham, NC 27708, United States.

Microsoft Research, New York, NY 10012, United States.

出版信息

J Am Med Inform Assoc. 2025 Apr 1;32(4):736-747. doi: 10.1093/jamia/ocae318.

Abstract

OBJECTIVE

Prediction of mortality in intensive care unit (ICU) patients typically relies on black box models (that are unacceptable for use in hospitals) or hand-tuned interpretable models (that might lead to the loss in performance). We aim to bridge the gap between these 2 categories by building on modern interpretable machine learning (ML) techniques to design interpretable mortality risk scores that are as accurate as black boxes.

MATERIAL AND METHODS

We developed a new algorithm, GroupFasterRisk, which has several important benefits: it uses both hard and soft direct sparsity regularization, it incorporates group sparsity to allow more cohesive models, it allows for monotonicity constraint to include domain knowledge, and it produces many equally good models, which allows domain experts to choose among them. For evaluation, we leveraged the largest existing public ICU monitoring datasets (MIMIC III and eICU).

RESULTS

Models produced by GroupFasterRisk outperformed OASIS and SAPS II scores and performed similarly to APACHE IV/IVa while using at most a third of the parameters. For patients with sepsis/septicemia, acute myocardial infarction, heart failure, and acute kidney failure, GroupFasterRisk models outperformed OASIS and SOFA. Finally, different mortality prediction ML approaches performed better based on variables selected by GroupFasterRisk as compared to OASIS variables.

DISCUSSION

GroupFasterRisk's models performed better than risk scores currently used in hospitals, and on par with black box ML models, while being orders of magnitude sparser. Because GroupFasterRisk produces a variety of risk scores, it allows design flexibility-the key enabler of practical model creation.

CONCLUSION

GroupFasterRisk is a fast, accessible, and flexible procedure that allows learning a diverse set of sparse risk scores for mortality prediction.

摘要

目的

重症监护病房(ICU)患者死亡率的预测通常依赖于黑箱模型(医院无法接受使用)或手动调整的可解释模型(可能导致性能损失)。我们旨在通过基于现代可解释机器学习(ML)技术来弥合这两类模型之间的差距,以设计出与黑箱模型一样准确的可解释死亡率风险评分。

材料与方法

我们开发了一种新算法GroupFasterRisk,它具有几个重要优点:它同时使用硬和软直接稀疏正则化,纳入组稀疏性以允许更具凝聚力的模型,允许单调性约束以纳入领域知识,并且它产生许多同样好的模型,这使领域专家能够在其中进行选择。为了进行评估,我们利用了现有的最大公共ICU监测数据集(MIMIC III和eICU)。

结果

GroupFasterRisk产生的模型优于OASIS和SAPS II评分,并且在使用最多三分之一参数的情况下,表现与APACHE IV/IVa相似。对于患有败血症/脓毒症、急性心肌梗死、心力衰竭和急性肾衰竭的患者,GroupFasterRisk模型优于OASIS和SOFA。最后,与OASIS变量相比,基于GroupFasterRisk选择的变量,不同的死亡率预测ML方法表现更好。

讨论

GroupFasterRisk的模型比医院目前使用的风险评分表现更好,并且与黑箱ML模型相当,同时稀疏程度要高出几个数量级。由于GroupFasterRisk产生各种风险评分,它允许设计灵活性——这是实际模型创建的关键促成因素。

结论

GroupFasterRisk是一种快速、可访问且灵活的程序,它允许学习用于死亡率预测的各种稀疏风险评分。

相似文献

5

本文引用的文献

9
Comparison of in-hospital mortality risk prediction models from COVID-19.比较 COVID-19 住院患者死亡率风险预测模型
PLoS One. 2020 Dec 28;15(12):e0244629. doi: 10.1371/journal.pone.0244629. eCollection 2020.
10
A review on genetic algorithm: past, present, and future.关于遗传算法的综述:过去、现在与未来。
Multimed Tools Appl. 2021;80(5):8091-8126. doi: 10.1007/s11042-020-10139-6. Epub 2020 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验