Suppr超能文献

相似文献

1
Improving Structure-Based Virtual Screening with Ensemble Docking and Machine Learning.
J Chem Inf Model. 2021 Nov 22;61(11):5362-5376. doi: 10.1021/acs.jcim.1c00511. Epub 2021 Oct 15.
2
Ensemble learning from ensemble docking: revisiting the optimum ensemble size problem.
Sci Rep. 2022 Jan 10;12(1):410. doi: 10.1038/s41598-021-04448-5.
3
Boosted neural networks scoring functions for accurate ligand docking and ranking.
J Bioinform Comput Biol. 2018 Apr;16(2):1850004. doi: 10.1142/S021972001850004X. Epub 2018 Feb 4.
4
Teaching old docks new tricks with machine learning enhanced ensemble docking.
Sci Rep. 2024 Sep 5;14(1):20722. doi: 10.1038/s41598-024-71699-3.
7
Computational representations of protein-ligand interfaces for structure-based virtual screening.
Expert Opin Drug Discov. 2021 Oct;16(10):1175-1192. doi: 10.1080/17460441.2021.1929921. Epub 2021 Jun 3.
9
Recipes for the selection of experimental protein conformations for virtual screening.
J Chem Inf Model. 2010 Jan;50(1):186-93. doi: 10.1021/ci9003943.
10
Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening.
J Chem Inf Model. 2017 Jul 24;57(7):1579-1590. doi: 10.1021/acs.jcim.7b00153. Epub 2017 Jul 12.

引用本文的文献

1
Digital Alchemy: The Rise of Machine and Deep Learning in Small-Molecule Drug Discovery.
Int J Mol Sci. 2025 Jul 16;26(14):6807. doi: 10.3390/ijms26146807.
3
Ensemble Docking for Intrinsically Disordered Proteins.
J Chem Inf Model. 2025 Jul 14;65(13):6847-6860. doi: 10.1021/acs.jcim.5c00370. Epub 2025 Jun 18.
4
Integrating Hydrogen Exchange with Molecular Dynamics for Improved Ligand Binding Predictions.
J Chem Inf Model. 2025 Jun 23;65(12):6144-6154. doi: 10.1021/acs.jcim.5c00397. Epub 2025 Jun 11.
5
SPLIF-Enhanced Attention-Driven 3D CNNs for Precise and Reliable Protein-Ligand Interaction Modeling for METTL3.
ACS Omega. 2025 Apr 16;10(16):16748-16761. doi: 10.1021/acsomega.5c00538. eCollection 2025 Apr 29.
6
Can Deep Learning Blind Docking Methods be Used to Predict Allosteric Compounds?
J Chem Inf Model. 2025 Apr 14;65(7):3737-3748. doi: 10.1021/acs.jcim.5c00331. Epub 2025 Apr 1.
7
Toward the Prediction of Binding Events in Very Flexible, Allosteric, Multidomain Proteins.
J Chem Inf Model. 2025 Feb 24;65(4):2052-2065. doi: 10.1021/acs.jcim.4c01810. Epub 2025 Feb 5.
8
Ensemble docking for intrinsically disordered proteins.
bioRxiv. 2025 Jan 26:2025.01.23.634614. doi: 10.1101/2025.01.23.634614.
9
In Silico Conotoxin Studies: Progress and Prospects.
Molecules. 2024 Dec 23;29(24):6061. doi: 10.3390/molecules29246061.
10
SurfDock is a surface-informed diffusion generative model for reliable and accurate protein-ligand complex prediction.
Nat Methods. 2025 Feb;22(2):310-322. doi: 10.1038/s41592-024-02516-y. Epub 2024 Nov 27.

本文引用的文献

1
Selecting machine-learning scoring functions for structure-based virtual screening.
Drug Discov Today Technol. 2019 Dec;32-33:81-87. doi: 10.1016/j.ddtec.2020.09.001. Epub 2020 Sep 19.
2
Using machine learning to improve ensemble docking for drug discovery.
Proteins. 2020 Oct;88(10):1263-1270. doi: 10.1002/prot.25899. Epub 2020 May 25.
3
Improving Docking-Based Virtual Screening Ability by Integrating Multiple Energy Auxiliary Terms from Molecular Docking Scoring.
J Chem Inf Model. 2020 Sep 28;60(9):4216-4230. doi: 10.1021/acs.jcim.9b00977. Epub 2020 May 11.
5
Molecular Docking: Shifting Paradigms in Drug Discovery.
Int J Mol Sci. 2019 Sep 4;20(18):4331. doi: 10.3390/ijms20184331.
6
Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening.
PLoS One. 2019 Aug 20;14(8):e0220113. doi: 10.1371/journal.pone.0220113. eCollection 2019.
7
Comparison of Data Fusion Methods as Consensus Scores for Ensemble Docking.
Molecules. 2019 Jul 24;24(15):2690. doi: 10.3390/molecules24152690.
8
Exponential consensus ranking improves the outcome in docking and receptor ensemble docking.
Sci Rep. 2019 Mar 26;9(1):5142. doi: 10.1038/s41598-019-41594-3.
9
Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape.
J Chem Inf Model. 2019 Apr 22;59(4):1515-1528. doi: 10.1021/acs.jcim.8b00730. Epub 2019 Mar 28.
10
In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening.
J Chem Inf Model. 2019 Mar 25;59(3):947-961. doi: 10.1021/acs.jcim.8b00712. Epub 2019 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验