Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824-1322, USA.
Nat Chem. 2016 Aug;8(8):778-83. doi: 10.1038/nchem.2557. Epub 2016 Jul 4.
Semiconductor electrodes capable of using solar photons to drive water-splitting reactions, such as haematite (α-Fe2O3), have been the subject of tremendous interest over recent decades. The surface has been found to play a significant role in determining the efficiency of water oxidation with haematite; however, previous works have only allowed hypotheses to be formulated regarding the identity of relevant surface species. Here we investigate the water-oxidation reaction on haematite using infrared spectroscopy under photoelectrochemical (PEC) water-oxidation conditions. A potential- and light-dependent absorption peak at 898 cm(-1) is assigned to a Fe(IV)=O group, which is an intermediate in the PEC water-oxidation reaction. These results provide direct evidence of high-valent iron-oxo intermediates as the product of the first hole-transfer reaction on the haematite surface and represent an important step in establishing the mechanism of PEC water oxidation on semiconductor electrodes.
在过去几十年中,能够利用太阳光子驱动水分解反应的半导体电极(如赤铁矿(α-Fe2O3))引起了极大的关注。已经发现表面在确定赤铁矿水氧化效率方面起着重要作用;然而,以前的工作仅允许根据相关表面物种的身份来制定假设。在这里,我们在光电化学(PEC)水氧化条件下使用红外光谱研究赤铁矿上的水氧化反应。在 898 cm(-1)处的一个与电势和光有关的吸收峰被分配给 Fe(IV)=O 基团,这是 PEC 水氧化反应的中间产物。这些结果为高价铁氧中间体作为赤铁矿表面上第一个空穴转移反应的产物提供了直接证据,并代表在半导体电极上建立 PEC 水氧化机制的重要步骤。