1] Department of Biochemistry, Molecular Biology &Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA [2] Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, USA.
Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA.
Nature. 2015 Feb 19;518(7539):431-4. doi: 10.1038/nature14160. Epub 2015 Jan 21.
Methane monooxygenase (MMO) catalyses the O2-dependent conversion of methane to methanol in methanotrophic bacteria, thereby preventing the atmospheric egress of approximately one billion tons of this potent greenhouse gas annually. The key reaction cycle intermediate of the soluble form of MMO (sMMO) is termed compound Q (Q). Q contains a unique dinuclear Fe(IV) cluster that reacts with methane to break an exceptionally strong 105 kcal mol(-1) C-H bond and insert one oxygen atom. No other biological oxidant, except that found in the particulate form of MMO, is capable of such catalysis. The structure of Q remains controversial despite numerous spectroscopic, computational and synthetic model studies. A definitive structural assignment can be made from resonance Raman vibrational spectroscopy but, despite efforts over the past two decades, no vibrational spectrum of Q has yet been obtained. Here we report the core structures of Q and the following product complex, compound T, using time-resolved resonance Raman spectroscopy (TR(3)). TR(3) permits fingerprinting of intermediates by their unique vibrational signatures through extended signal averaging for short-lived species. We report unambiguous evidence that Q possesses a bis-μ-oxo diamond core structure and show that both bridging oxygens originate from O2. This observation strongly supports a homolytic mechanism for O-O bond cleavage. We also show that T retains a single oxygen atom from O2 as a bridging ligand, while the other oxygen atom is incorporated into the product. Capture of the extreme oxidizing potential of Q is of great contemporary interest for bioremediation and the development of synthetic approaches to methane-based alternative fuels and chemical industry feedstocks. Insight into the formation and reactivity of Q from the structure reported here is an important step towards harnessing this potential.
甲烷单加氧酶(MMO)催化需氧转化甲烷为甲醇,从而防止每年约有 10 亿吨这种强力温室气体逸入大气。可溶性甲烷单加氧酶(sMMO)的关键反应循环中间体被称为化合物 Q(Q)。Q 含有独特的双核 Fe(IV)簇,可与甲烷反应,打破异常强的 105 kcal mol(-1) C-H 键,并插入一个氧原子。除了在 MMO 的颗粒形式中发现的氧化剂外,没有其他生物氧化剂能够进行这种催化。尽管进行了多次光谱、计算和合成模型研究,但 Q 的结构仍然存在争议。从共振拉曼振动光谱可以做出明确的结构分配,但尽管在过去二十年中做出了努力,仍未获得 Q 的振动光谱。在这里,我们使用时间分辨共振拉曼光谱(TR(3))报告了 Q 和以下产物复合物 T 的核心结构。TR(3) 通过对短寿命物种进行扩展信号平均,通过其独特的振动特征对中间体进行指纹识别。我们报告了明确的证据表明 Q 具有双-μ-氧代金刚石核结构,并表明两个桥接氧均来自 O2。这一观察结果强烈支持 O-O 键断裂的均裂机制。我们还表明,T 保留来自 O2 的一个氧原子作为桥联配体,而另一个氧原子则被纳入产物中。捕获 Q 的极端氧化电势对于生物修复以及开发基于甲烷的替代燃料和化学工业原料的合成方法具有重要的当代意义。从这里报告的结构中获得对 Q 的形成和反应性的洞察力是利用这种潜力的重要一步。