Department of Electrical and Computer Engineering, Iowa State University , Ames, Iowa 50011, United States.
Department of Chemical and Biomolecular Engineering, North Carolina State University , Raleigh, North Carolina 27695, United States.
ACS Appl Mater Interfaces. 2016 Aug 17;8(32):20570-82. doi: 10.1021/acsami.6b05648. Epub 2016 Aug 3.
We report on a label-free microfluidic immunosensor with femtomolar sensitivity and high selectivity for early detection of epidermal growth factor receptor 2 (EGFR2 or ErbB2) proteins. This sensor utilizes a uniquely structured immunoelectrode made of porous hierarchical graphene foam (GF) modified with electrospun carbon-doped titanium dioxide nanofibers (nTiO2) as an electrochemical working electrode. Due to excellent biocompatibility, intrinsic surface defects, high reaction kinetics, and good stability for proteins, anatase nTiO2 are ideal for electrochemical sensor applications. The three-dimensional and porous features of GF allow nTiO2 to penetrate and attach to the surface of the GF by physical adsorption. Combining GF with functional nTiO2 yields high charge transfer resistance, large surface area, and porous access to the sensing surface by the analyte, resulting in new possibilities for the development of electrochemical immunosensors. Here, the enabling of EDC-NHS chemistry covalently immobilized the antibody of ErbB2 (anti-ErbB2) on the GF-nTiO2 composite. To obtain a compact sensor architecture, the composite working electrode was designed to hang above the gold counter electrode in a microfluidic channel. The sensor underwent differential pulse voltammetry and electrochemical impedance spectroscopy to quantify breast cancer biomarkers. The two methods had high sensitivities of 0.585 μA μM(-1) cm(-2) and 43.7 kΩ μM(-1) cm(-2) in a wide concentration range of target ErbB2 antigen from 1 × 10(-15) M (1.0 fM) to 0.1 × 10(-6) M (0.1 μM) and from 1 × 10(-13) M (0.1 pM) to 0.1 × 10(-6) M (0.1 μM), respectively. Utilization of the specific recognition element, i.e., anti-ErbB2, results in high specificity, even in the presence of identical members of the EGFR family of receptor tyrosine kinases, such as ErbB3 and ErbB4. Many promising applications in the field of electrochemical detection of chemical and biological species will derive from the integration of the porous GF-nTiO2 composite into microfluidic devices.
我们报告了一种具有飞摩尔灵敏度和高选择性的无标记微流控免疫传感器,用于早期检测表皮生长因子受体 2(EGFR2 或 ErbB2)蛋白。该传感器利用独特结构的免疫电极,该电极由多孔分级石墨烯泡沫(GF)制成,并经过电纺碳掺杂二氧化钛纳米纤维(nTiO2)修饰,作为电化学工作电极。由于具有极好的生物相容性、内在表面缺陷、高反应动力学和对蛋白质的良好稳定性,锐钛矿 nTiO2 是电化学传感器应用的理想选择。GF 的三维多孔特性允许 nTiO2 通过物理吸附穿透并附着在 GF 的表面上。将 GF 与功能化的 nTiO2 结合使用,可产生高电荷转移电阻、大表面积以及通过分析物进入传感表面的多孔通道,从而为电化学免疫传感器的发展带来新的可能性。在这里,EDC-NHS 化学通过共价键将 ErbB2(抗 ErbB2)抗体固定在 GF-nTiO2 复合材料上。为了获得紧凑的传感器结构,将复合工作电极设计成悬挂在微流道中的金对电极上方。传感器经过差分脉冲伏安法和电化学阻抗谱法来定量检测乳腺癌生物标志物。这两种方法在广泛的目标 ErbB2 抗原浓度范围内都具有高灵敏度,分别为 0.585 μA μM(-1) cm(-2)和 43.7 kΩ μM(-1) cm(-2),从 1×10(-15) M(1.0 fM)至 0.1×10(-6) M(0.1 μM)和从 1×10(-13) M(0.1 pM)至 0.1×10(-6) M(0.1 μM)。利用特异性识别元件,即抗 ErbB2,即使在受体酪氨酸激酶 EGFR 家族的相同成员,如 ErbB3 和 ErbB4 存在的情况下,也能实现高特异性。将多孔 GF-nTiO2 复合材料集成到微流控器件中,将衍生出许多在电化学检测化学和生物物种领域的有前景的应用。