Bonney Stephanie, Harrison-Uy Susan, Mishra Swati, MacPherson Amber M, Choe Youngshik, Li Dan, Jaminet Shou-Ching, Fruttiger Marcus, Pleasure Samuel J, Siegenthaler Julie A
Department of Pediatrics, Section of Developmental Biology, University of Colorado, School of Medicine-Anschutz Medical Campus Aurora, Colorado 80045.
Department of Neurology, University of California, San Francisco, California 94158.
J Neurosci. 2016 Jul 20;36(29):7786-801. doi: 10.1523/JNEUROSCI.3952-15.2016.
As neural structures grow in size and increase metabolic demand, the CNS vasculature undergoes extensive growth, remodeling, and maturation. Signals from neural tissue act on endothelial cells to stimulate blood vessel ingression, vessel patterning, and acquisition of mature brain vascular traits, most notably the blood-brain barrier. Using mouse genetic and in vitro approaches, we identified retinoic acid (RA) as an important regulator of brain vascular development via non-cell-autonomous and cell-autonomous regulation of endothelial WNT signaling. Our analysis of globally RA-deficient embryos (Rdh10 mutants) points to an important, non-cell-autonomous function for RA in the development of the vasculature in the neocortex. We demonstrate that Rdh10 mutants have severe defects in cerebrovascular development and that this phenotype correlates with near absence of endothelial WNT signaling, specifically in the cerebrovasculature, and substantially elevated expression of WNT inhibitors in the neocortex. We show that RA can suppress the expression of WNT inhibitors in neocortical progenitors. Analysis of vasculature in non-neocortical brain regions suggested that RA may have a separate, cell-autonomous function in brain endothelial cells to inhibit WNT signaling. Using both gain and loss of RA signaling approaches, we show that RA signaling in brain endothelial cells can inhibit WNT-β-catenin transcriptional activity and that this is required to moderate the expression of WNT target Sox17. From this, a model emerges in which RA acts upstream of the WNT pathway via non-cell-autonomous and cell-autonomous mechanisms to ensure the formation of an adequate and stable brain vascular plexus.
Work presented here provides novel insight into important yet little understood aspects of brain vascular development, implicating for the first time a factor upstream of endothelial WNT signaling. We show that RA is permissive for cerebrovascular growth via suppression of WNT inhibitor expression in the neocortex. RA also functions cell-autonomously in brain endothelial cells to modulate WNT signaling and its downstream target, Sox17. The significance of this is although endothelial WNT signaling is required for neurovascular development, too much endothelial WNT signaling, as well as overexpression of its target Sox17, are detrimental. Therefore, RA may act as a "brake" on endothelial WNT signaling and Sox17 to ensure normal brain vascular development.
随着神经结构的大小增长和代谢需求增加,中枢神经系统血管系统经历广泛的生长、重塑和成熟。神经组织发出的信号作用于内皮细胞,以刺激血管侵入、血管模式形成以及获得成熟的脑血管特征,最显著的是血脑屏障。利用小鼠遗传学和体外实验方法,我们通过对内皮WNT信号的非细胞自主和细胞自主调节,确定视黄酸(RA)是脑血管发育的重要调节因子。我们对全球RA缺陷胚胎(Rdh10突变体)的分析表明,RA在新皮质血管系统发育中具有重要的非细胞自主功能。我们证明Rdh10突变体在脑血管发育中存在严重缺陷,并且这种表型与内皮WNT信号几乎缺失相关,特别是在脑血管系统中,并且新皮质中WNT抑制剂的表达大幅升高。我们表明RA可以抑制新皮质祖细胞中WNT抑制剂的表达。对非新皮质脑区血管系统的分析表明,RA可能在脑内皮细胞中具有独立的细胞自主功能以抑制WNT信号。使用RA信号增加和减少的方法,我们表明脑内皮细胞中的RA信号可以抑制WNT-β-连环蛋白转录活性,这是调节WNT靶标Sox17表达所必需的。由此产生了一个模型,其中RA通过非细胞自主和细胞自主机制在WNT途径上游起作用,以确保形成足够和稳定的脑血管丛。
此处呈现的工作为脑血管发育中重要但了解甚少的方面提供了新的见解,首次涉及内皮WNT信号上游的一个因子。我们表明RA通过抑制新皮质中WNT抑制剂的表达促进脑血管生长。RA在脑内皮细胞中也具有细胞自主功能,以调节WNT信号及其下游靶标Sox17。其意义在于,尽管内皮WNT信号是神经血管发育所必需的,但过多的内皮WNT信号及其靶标Sox17的过表达是有害的。因此,RA可能作为内皮WNT信号和Sox17上 的“刹车”以确保正常的脑血管发育。