Brönnimann Ben, Meier Michael L, Hou Mei-Yin, Parkinson Charles, Ettlin Dominik A
Pain Research Lab, Center of Dental Medicine, University of Zurich Zurich, Switzerland.
Pain Research Lab, Center of Dental Medicine, University of ZurichZurich, Switzerland; Interdisciplinary Spinal Pain Research ISR, Balgrist University HospitalZurich, Switzerland.
Front Hum Neurosci. 2016 Jun 30;10:335. doi: 10.3389/fnhum.2016.00335. eCollection 2016.
The advent of neuroimaging in dental research provides exciting opportunities for relating excitation of trigeminal neurons to human somatosensory perceptions. Cold air sensitivity is one of the most frequent causes of dental discomfort or pain. Up to date, devices capable of delivering controlled cold air in an MR-environment are unavailable for quantitative sensory testing. This study therefore aimed at constructing and evaluating a novel MR-compatible, computer-controlled cold air stimulation apparatus (CASA) that produces graded air puffs. CASA consisted of a multi-injector air jet delivery system (AJS), a cold exchanger, a cooling agent, and a stimulus application construction. Its feasibility was tested by performing an fMRI stimulation experiment on a single subject experiencing dentine cold sensitivity. The novel device delivered repetitive, stable air stimuli ranging from room temperature (24.5°C ± 2°C) to -35°C, at flow rates between 5 and 17 liters per minute (l/min). These cold air puffs evoked perceptions similar to natural stimuli. Single-subject fMRI-analysis yielded brain activations typically associated with acute pain processing including thalamus, insular and cingulate cortices, somatosensory, cerebellar, and frontal brain regions. Thus, the novel CASA allowed for controlled, repetitive quantitative sensory testing by using air stimuli at graded temperatures (room temperature down to -35°C) while simultaneously recording brain responses. No MR-compatible stimulation device currently exists that is capable of providing non-contact natural-like stimuli at a wide temperature range to tissues in spatially restricted areas such as the mouth. The physical characteristics of this novel device thus holds promise for advancing the field of trigeminal and spinal somatosensory research, namely with respect to comparing therapeutic interventions for dentine hypersensitivity.
神经影像学在牙科研究中的出现为将三叉神经神经元的兴奋与人类体感认知联系起来提供了令人兴奋的机会。冷空气敏感性是牙科不适或疼痛最常见的原因之一。到目前为止,能够在磁共振环境中输送可控冷空气的设备尚无法用于定量感觉测试。因此,本研究旨在构建并评估一种新型的磁共振兼容、计算机控制的冷空气刺激装置(CASA),该装置可产生分级气团。CASA由多喷射器喷气输送系统(AJS)、冷交换器、冷却剂和刺激应用结构组成。通过对一名患有牙本质冷敏感的受试者进行功能磁共振成像刺激实验来测试其可行性。该新型装置可提供重复、稳定的空气刺激,温度范围从室温(24.5°C±2°C)到-35°C,流速为每分钟5至17升(l/min)。这些冷空气气团引起的感觉类似于自然刺激。单受试者功能磁共振成像分析产生了通常与急性疼痛处理相关的大脑激活,包括丘脑、岛叶和扣带回皮质、体感、小脑和额叶脑区。因此,新型CASA能够通过使用分级温度(室温至-35°C)的空气刺激同时记录大脑反应,进行可控、重复的定量感觉测试。目前不存在能够在广泛温度范围内为口腔等空间受限区域的组织提供非接触式自然样刺激的磁共振兼容刺激装置。因此,这种新型装置的物理特性有望推动三叉神经和脊髓体感研究领域的发展,特别是在比较牙本质过敏症的治疗干预方面。