Lahlali Rachid, Kumar Saroj, Wang Lipu, Forseille Li, Sylvain Nicole, Korbas Malgorzata, Muir David, Swerhone George, Lawrence John R, Fobert Pierre R, Peng Gary, Karunakaran Chithra
Canadian Light Source Saskatoon, SK, Canada.
National Research Council Canada Saskatoon, SK, Canada.
Front Microbiol. 2016 Jun 27;7:910. doi: 10.3389/fmicb.2016.00910. eCollection 2016.
Fusarium head blight (FHB) is a serious disease of wheat worldwide. Cultivar resistance to FHB depends on biochemical factors that confine the pathogen spread in spikes. Breeding for cultivar resistance is considered the most practical way to manage this disease. In this study, different spectroscopy and microscopy techniques were applied to discriminate resistance in wheat genotypes against FHB. Synchrotron-based spectroscopy and imaging techniques, including focal plane array infrared and X-ray fluorescence (XRF) spectroscopy were used to understand changes in biochemical and nutrients in rachis following FHB infection. Sumai3 and Muchmore were used to represent resistant and susceptible cultivars to FHB, respectively, in this study. The histological comparison of rachis showed substantial differences in the cell wall thickness between the cultivars after infection. Synchrotron-based infrared imaging emphasized substantial difference in biochemical composition of rachis samples between the two cultivars prior to visible symptoms; in the resistant Sumai3, infrared bands representing lignin and hemicellulose were stronger and more persistent compared to the susceptible cultivar. These bands may be the candidates of biochemical markers for FHB resistance. Focal plane array infrared imaging (FPA) spectra from the rachis epidermis and vascular bundles revealed a new band (1710 cm(-1)) related to the oxidative stress on the susceptible cultivar only. XRF spectroscopy data revealed differences in nutrients composition between cultivars, and between controls and inoculated samples, with substantial increases observed for Ca, K, Mn, Fe, Zn, and Si in the resistant cultivar. These nutrients are related to cell wall stability, metabolic process, and plant defense mechanisms such as lignification pathway and callose deposition. The combination of cell wall composition and lignification plays a role in the mechanism of type II host resistance to FHB. Biochemical profiling using the synchrotron-based spectroscopy holds potential for screening wheat genotypes for FHB resistance.
赤霉病是一种在全球范围内对小麦危害严重的病害。品种对赤霉病的抗性取决于限制病原菌在穗部传播的生化因素。培育抗病品种被认为是防治这种病害最切实可行的方法。在本研究中,应用了不同的光谱学和显微镜技术来鉴别小麦基因型对赤霉病的抗性。基于同步加速器的光谱学和成像技术,包括焦平面阵列红外光谱和X射线荧光(XRF)光谱,被用于了解赤霉病感染后穗轴中生化成分和养分的变化。在本研究中,苏麦3号和Muchmore分别被用来代表对赤霉病具有抗性和敏感性的品种。穗轴的组织学比较显示,感染后两个品种之间的细胞壁厚度存在显著差异。基于同步加速器的红外成像强调了在可见症状出现之前,两个品种穗轴样品的生化组成存在显著差异;在抗病的苏麦3号中,代表木质素和半纤维素的红外波段比感病品种更强且更持久。这些波段可能是赤霉病抗性生化标记的候选对象。来自穗轴表皮和维管束的焦平面阵列红外成像(FPA)光谱显示,仅在感病品种中出现了一条与氧化应激相关的新波段(1710 cm(-1))。XRF光谱数据揭示了品种之间以及对照与接种样品之间养分组成的差异,抗病品种中的钙、钾、锰、铁、锌和硅含量显著增加。这些养分与细胞壁稳定性、代谢过程以及植物防御机制如木质化途径和胼胝质沉积有关。细胞壁组成和木质化的结合在小麦对赤霉病的II型寄主抗性机制中发挥作用。利用基于同步加速器的光谱学进行生化分析具有筛选小麦赤霉病抗性基因型的潜力。