Suppr超能文献

小鼠视网膜低激光功率双光子荧光图像的配准与平均

Image registration and averaging of low laser power two-photon fluorescence images of mouse retina.

作者信息

Alexander Nathan S, Palczewska Grazyna, Stremplewski Patrycjusz, Wojtkowski Maciej, Kern Timothy S, Palczewski Krzysztof

机构信息

Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;

Polgenix Inc., 11000 Cedar Ave, Cleveland, Ohio 44106, USA.

出版信息

Biomed Opt Express. 2016 Jun 20;7(7):2671-91. doi: 10.1364/BOE.7.002671. eCollection 2016 Jul 1.

Abstract

Two-photon fluorescence microscopy (TPM) is now being used routinely to image live cells for extended periods deep within tissues, including the retina and other structures within the eye . However, very low laser power is a requirement to obtain TPM images of the retina safely. Unfortunately, a reduction in laser power also reduces the signal-to-noise ratio of collected images, making it difficult to visualize structural details. Here, image registration and averaging methods applied to TPM images of the eye in living animals (without the need for auxiliary hardware) demonstrate the structural information obtained with laser power down to 1 mW. Image registration provided between 1.4% and 13.0% improvement in image quality compared to averaging images without registrations when using a high-fluorescence template, and between 0.2% and 12.0% when employing the average of collected images as the template. Also, a diminishing return on image quality when more images were used to obtain the averaged image is shown. This work provides a foundation for obtaining informative TPM images with laser powers of 1 mW, compared to previous levels for imaging mice ranging between 6.3 mW [Palczewska G., Nat Med.20, 785 (2014) Sharma R., Biomed. Opt. Express4, 1285 (2013)].

摘要

双光子荧光显微镜(TPM)现在经常用于长时间对组织深处的活细胞进行成像,包括视网膜和眼内的其他结构。然而,为了安全地获得视网膜的TPM图像,需要非常低的激光功率。不幸的是,激光功率的降低也会降低采集图像的信噪比,使得难以可视化结构细节。在这里,应用于活体动物眼部TPM图像的图像配准和平均方法(无需辅助硬件)证明了在低至1 mW的激光功率下获得的结构信息。与使用高荧光模板时不进行配准直接平均图像相比,图像配准使图像质量提高了1.4%至13.0%,而以采集图像的平均值作为模板时,提高了0.2%至12.0%。此外,还表明当使用更多图像来获得平均图像时,图像质量的回报会逐渐减少。与之前对小鼠成像的激光功率水平(范围在6.3 mW [帕尔采夫斯卡G.,《自然医学》20,785(2014年);夏尔马R.,《生物医学光学快报》4,1285(2013年)])相比,这项工作为使用1 mW激光功率获得信息丰富的TPM图像奠定了基础。

相似文献

1
Image registration and averaging of low laser power two-photon fluorescence images of mouse retina.
Biomed Opt Express. 2016 Jun 20;7(7):2671-91. doi: 10.1364/BOE.7.002671. eCollection 2016 Jul 1.
2
Statistical evaluation of confocal microscopy images.
Cytometry. 2001 Aug 1;44(4):295-308. doi: 10.1002/1097-0320(20010801)44:4<295::aid-cyto1121>3.0.co;2-c.
3
High-resolution two-photon excitation microscopy of ocular tissues in porcine eye.
Lasers Surg Med. 2008 Apr;40(4):247-56. doi: 10.1002/lsm.20628.
4
SNR enhanced high-speed two-photon microscopy using a pulse picker and time gating detection.
Sci Rep. 2023 Aug 30;13(1):14244. doi: 10.1038/s41598-023-41270-7.
5
Semi-automated discrimination of retinal pigmented epithelial cells in two-photon fluorescence images of mouse retinas.
Biomed Opt Express. 2015 Jul 23;6(8):3032-52. doi: 10.1364/BOE.6.003032. eCollection 2015 Aug 1.
7
Endogenous fluorophores enable two-photon imaging of the primate eye.
Invest Ophthalmol Vis Sci. 2014 Jun 26;55(7):4438-47. doi: 10.1167/iovs.14-14395.
8
Moxifloxacin as a contrast agent of two-photon microscopic imaging for detecting colorectal diseases.
J Biophotonics. 2023 May;16(5):e202200367. doi: 10.1002/jbio.202200367. Epub 2023 Jan 20.
9
Two-Photon Microscopy of the Mouse Peripheral Cornea Ex Vivo.
Cornea. 2016 Nov;35 Suppl 1:S31-S37. doi: 10.1097/ICO.0000000000001006.
10
Two-photon fluorescence imaging with 30 fs laser system tunable around 1 micron.
Opt Express. 2014 Jun 30;22(13):16456-61. doi: 10.1364/OE.22.016456.

引用本文的文献

2
From mouse to human: Accessing the biochemistry of vision in vivo by two-photon excitation.
Prog Retin Eye Res. 2023 Mar;93:101170. doi: 10.1016/j.preteyeres.2023.101170. Epub 2023 Feb 12.
3
Boundary-Preserved Deep Denoising of Stochastic Resonance Enhanced Multiphoton Images.
IEEE J Transl Eng Health Med. 2022 Sep 14;10:1800812. doi: 10.1109/JTEHM.2022.3206488. eCollection 2022.
4
Review on data analysis methods for mesoscale neural imaging .
Neurophotonics. 2022 Oct;9(4):041407. doi: 10.1117/1.NPh.9.4.041407. Epub 2022 Apr 15.
5
Retinal Organoids Long-Term Functional Characterization Using Two-Photon Fluorescence Lifetime and Hyperspectral Microscopy.
Front Cell Neurosci. 2021 Dec 10;15:796903. doi: 10.3389/fncel.2021.796903. eCollection 2021.
6
Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo.
Light Sci Appl. 2020 May 6;9:79. doi: 10.1038/s41377-020-0317-9. eCollection 2020.
7
Non-invasive cellular-resolution retinal imaging with two-photon excited fluorescence.
Biomed Opt Express. 2019 Aug 27;10(9):4859-4873. doi: 10.1364/BOE.10.004859. eCollection 2019 Sep 1.
8
Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction.
Biomed Opt Express. 2019 Aug 23;10(9):4757-4774. doi: 10.1364/BOE.10.004757. eCollection 2019 Sep 1.
9
Sensorless adaptive optics multimodal en-face small animal retinal imaging.
Biomed Opt Express. 2018 Dec 19;10(1):252-267. doi: 10.1364/BOE.10.000252. eCollection 2019 Jan 1.
10
Two-photon imaging of the mammalian retina with ultrafast pulsing laser.
JCI Insight. 2018 Sep 6;3(17). doi: 10.1172/jci.insight.121555.

本文引用的文献

1
Single-particle cryo-electron microscopy.
Nat Methods. 2016 Jan;13(1):23. doi: 10.1038/nmeth.3700.
2
In Vivo Two-Photon Fluorescence Kinetics of Primate Rods and Cones.
Invest Ophthalmol Vis Sci. 2016 Feb;57(2):647-57. doi: 10.1167/iovs.15-17946.
3
Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye.
Invest Ophthalmol Vis Sci. 2016 Feb;57(2):632-46. doi: 10.1167/iovs.15-17961.
4
Wavefront sensorless adaptive optics fluorescence biomicroscope for in vivo retinal imaging in mice.
Biomed Opt Express. 2015 Dec 3;7(1):1-12. doi: 10.1364/BOE.7.000001. eCollection 2016 Jan 1.
5
Periscope for noninvasive two-photon imaging of murine retina in vivo.
Biomed Opt Express. 2015 Aug 13;6(9):3352-61. doi: 10.1364/BOE.6.003352. eCollection 2015 Sep 1.
6
The progress in understanding and treatment of diabetic retinopathy.
Prog Retin Eye Res. 2016 Mar;51:156-86. doi: 10.1016/j.preteyeres.2015.08.001. Epub 2015 Aug 18.
7
Retinylamine Benefits Early Diabetic Retinopathy in Mice.
J Biol Chem. 2015 Aug 28;290(35):21568-79. doi: 10.1074/jbc.M115.655555. Epub 2015 Jul 2.
8
An adaptive optics imaging system designed for clinical use.
Biomed Opt Express. 2015 May 18;6(6):2120-37. doi: 10.1364/BOE.6.002120. eCollection 2015 Jun 1.
9
In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography.
Biomed Opt Express. 2015 Jan 16;6(2):580-90. doi: 10.1364/BOE.6.000580. eCollection 2015 Feb 1.
10
Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy.
Biomed Opt Express. 2014 Aug 26;5(9):3174-91. doi: 10.1364/BOE.5.003174. eCollection 2014 Sep 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验