Suppr超能文献

代谢建模揭示了次级复制子在苜蓿中华根瘤菌中适应小生境的专业化。

Metabolic modelling reveals the specialization of secondary replicons for niche adaptation in Sinorhizobium meliloti.

机构信息

Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1A1.

Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy.

出版信息

Nat Commun. 2016 Jul 22;7:12219. doi: 10.1038/ncomms12219.

Abstract

The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes.

摘要

大约 10%的细菌物种的基因组分布在两个或更多个大型染色体大小的复制子中。每个复制子对微生物生命周期的贡献(例如,环境适应和/或生态位转换)尚不清楚。在这里,我们报告了豆科植物根瘤菌 Sinorhizobium meliloti 的基因组规模代谢模型,该模型与 192 种碳底物的 1500 个基因的碳利用数据进行了整合。我们以三个生态位(土壤、根际和根瘤)为重点,对 S. meliloti 的生长进行建模,重点研究了其三个复制子中的每一个的作用。我们观察到在测试的生态位中生长时存在明显的代谢差异,以及在生态位转换后进行的整体重新编程。对推断的基因缺失突变体适应性的计算机模拟表明,次级复制子的进化是为了满足特定的功能,特别是与宿主相关的生态位适应。因此,次级复制子上的基因可能具有促进或抑制宿主相互作用的潜力,可用于生物技术目的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/59c0/4961836/32325b56aa6c/ncomms12219-f1.jpg

相似文献

2
Robustness encoded across essential and accessory replicons of the ecologically versatile bacterium Sinorhizobium meliloti.
PLoS Genet. 2018 Apr 19;14(4):e1007357. doi: 10.1371/journal.pgen.1007357. eCollection 2018 Apr.
3
Creation and Characterization of a Genomically Hybrid Strain in the Nitrogen-Fixing Symbiotic Bacterium Sinorhizobium meliloti.
ACS Synth Biol. 2018 Oct 19;7(10):2365-2378. doi: 10.1021/acssynbio.8b00158. Epub 2018 Oct 3.
4
Examination of prokaryotic multipartite genome evolution through experimental genome reduction.
PLoS Genet. 2014 Oct 23;10(10):e1004742. doi: 10.1371/journal.pgen.1004742. eCollection 2014 Oct.
5
Natural genomic design in Sinorhizobium meliloti: novel genomic architectures.
Genome Res. 2003 Aug;13(8):1810-7. doi: 10.1101/gr.1260903.
6
Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid.
Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9883-8. doi: 10.1073/pnas.161294798. Epub 2001 Jul 31.
9
Engineering a Chassis with Monopartite, Single Replicon Genome Configuration.
ACS Synth Biol. 2024 Aug 16;13(8):2515-2532. doi: 10.1021/acssynbio.4c00281. Epub 2024 Aug 7.
10
The complete genome sequence of the dominant Sinorhizobium meliloti field isolate SM11 extends the S. meliloti pan-genome.
J Biotechnol. 2011 Aug 20;155(1):20-33. doi: 10.1016/j.jbiotec.2010.12.018. Epub 2011 Mar 17.

引用本文的文献

1
Mobile gene clusters and coexpressed plant-rhizobium pathways drive partner quality variation in symbiosis.
Proc Natl Acad Sci U S A. 2025 Aug 5;122(31):e2411831122. doi: 10.1073/pnas.2411831122. Epub 2025 Jul 29.
2
In silico encounters: harnessing metabolic modelling to understand plant-microbe interactions.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuaf030.
3
Phenotype microarray-based assessment of metabolic variability in plant protoplasts.
Plant Methods. 2025 May 7;21(1):58. doi: 10.1186/s13007-025-01378-5.
4
Elevated Rates of Molecular Evolution Genome-wide in Mutualist Legumes and Rhizobia.
Mol Biol Evol. 2024 Dec 6;41(12). doi: 10.1093/molbev/msae245.
5
Reconstruction of the genome-scale metabolic network model of CCBAU45436 for free-living and symbiotic states.
Front Bioeng Biotechnol. 2024 Mar 25;12:1377334. doi: 10.3389/fbioe.2024.1377334. eCollection 2024.
6
Symbiosis for rhizobia is not an easy ride.
Nat Microbiol. 2024 Feb;9(2):314-315. doi: 10.1038/s41564-023-01591-9.
10
Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs.
ISME J. 2023 Mar;17(3):417-431. doi: 10.1038/s41396-023-01357-5. Epub 2023 Jan 10.

本文引用的文献

1
Genomic resources for identification of the minimal N2 -fixing symbiotic genome.
Environ Microbiol. 2016 Sep;18(8):2534-47. doi: 10.1111/1462-2920.13221. Epub 2016 Feb 16.
2
Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts.
Trends Microbiol. 2016 Jan;24(1):63-75. doi: 10.1016/j.tim.2015.10.007. Epub 2015 Nov 21.
3
Proline auxotrophy in Sinorhizobium meliloti results in a plant-specific symbiotic phenotype.
Microbiology (Reading). 2015 Dec;161(12):2341-51. doi: 10.1099/mic.0.000182. Epub 2015 Sep 21.
4
Evolution of Intra-specific Regulatory Networks in a Multipartite Bacterial Genome.
PLoS Comput Biol. 2015 Sep 4;11(9):e1004478. doi: 10.1371/journal.pcbi.1004478. eCollection 2015 Sep.
5
Arabinose and protocatechuate catabolism genes are important for growth of biovar in the pea rhizosphere.
Plant Soil. 2015;390(1-2):251-264. doi: 10.1007/s11104-015-2389-5. Epub 2015 Jan 30.
6
Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies.
Front Microbiol. 2015 May 26;6:496. doi: 10.3389/fmicb.2015.00496. eCollection 2015.
7
Genetic redundancy is prevalent within the 6.7 Mb Sinorhizobium meliloti genome.
Mol Genet Genomics. 2015 Aug;290(4):1345-56. doi: 10.1007/s00438-015-0998-6. Epub 2015 Feb 1.
8
Use of plant colonizing bacteria as chassis for transfer of N₂-fixation to cereals.
Curr Opin Biotechnol. 2015 Apr;32:216-222. doi: 10.1016/j.copbio.2015.01.004. Epub 2015 Jan 24.
9
Examination of prokaryotic multipartite genome evolution through experimental genome reduction.
PLoS Genet. 2014 Oct 23;10(10):e1004742. doi: 10.1371/journal.pgen.1004742. eCollection 2014 Oct.
10
Physiology, genetics, and biochemistry of carbon metabolism in the alphaproteobacterium Sinorhizobium meliloti.
Can J Microbiol. 2014 Aug;60(8):491-507. doi: 10.1139/cjm-2014-0306. Epub 2014 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验