Department of Biology, McMaster University, Hamilton, Ontario, Canada L8S 1A1.
Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy.
Nat Commun. 2016 Jul 22;7:12219. doi: 10.1038/ncomms12219.
The genome of about 10% of bacterial species is divided among two or more large chromosome-sized replicons. The contribution of each replicon to the microbial life cycle (for example, environmental adaptations and/or niche switching) remains unclear. Here we report a genome-scale metabolic model of the legume symbiont Sinorhizobium meliloti that is integrated with carbon utilization data for 1,500 genes with 192 carbon substrates. Growth of S. meliloti is modelled in three ecological niches (bulk soil, rhizosphere and nodule) with a focus on the role of each of its three replicons. We observe clear metabolic differences during growth in the tested ecological niches and an overall reprogramming following niche switching. In silico examination of the inferred fitness of gene deletion mutants suggests that secondary replicons evolved to fulfil a specialized function, particularly host-associated niche adaptation. Thus, genes on secondary replicons might potentially be manipulated to promote or suppress host interactions for biotechnological purposes.
大约 10%的细菌物种的基因组分布在两个或更多个大型染色体大小的复制子中。每个复制子对微生物生命周期的贡献(例如,环境适应和/或生态位转换)尚不清楚。在这里,我们报告了豆科植物根瘤菌 Sinorhizobium meliloti 的基因组规模代谢模型,该模型与 192 种碳底物的 1500 个基因的碳利用数据进行了整合。我们以三个生态位(土壤、根际和根瘤)为重点,对 S. meliloti 的生长进行建模,重点研究了其三个复制子中的每一个的作用。我们观察到在测试的生态位中生长时存在明显的代谢差异,以及在生态位转换后进行的整体重新编程。对推断的基因缺失突变体适应性的计算机模拟表明,次级复制子的进化是为了满足特定的功能,特别是与宿主相关的生态位适应。因此,次级复制子上的基因可能具有促进或抑制宿主相互作用的潜力,可用于生物技术目的。