Suppr超能文献

基于无线传感器的障碍覆盖问题专用 MOEA/D。

Problem Specific MOEA/D for Barrier Coverage with Wireless Sensors.

出版信息

IEEE Trans Cybern. 2017 Nov;47(11):3854-3865. doi: 10.1109/TCYB.2016.2585745. Epub 2016 Jul 18.

Abstract

Barrier coverage with wireless sensors aims at detecting intruders who attempt to cross a specific area, where wireless sensors are distributed remotely at random. This paper considers limited-power sensors with adjustable ranges deployed along a linear domain to form a barrier to detect intruding incidents. We introduce three objectives to minimize: 1) total power consumption while satisfying full coverage; 2) the number of active sensors to improve the reliability; and 3) the active sensor nodes' maximum sensing range to maintain fairness. We refer to the problem as the tradeoff barrier coverage (TBC) problem. With the aim of obtaining a better tradeoff among the three objectives, we present a multiobjective optimization framework based on multiobjective evolutionary algorithm (MOEA)/D, which is called problem specific MOEA/D (PS-MOEA/D). Specifically, we define a 2-tuple encoding scheme and introduce a cover-shrink algorithm to produce feasible and relatively optimal solutions. Subsequently, we incorporate problem-specific knowledge into local search, which allows search procedures for neighboring subproblems collaborate each other. By considering the problem characteristics, we analyze the complexity and incorporate a strategy of computational resource allocation into our algorithm. We validate our approach by comparing with four competitors through several most-used metrics. The experimental results demonstrate that PS-MOEA/D is effective and outperforms the four competitors in all the cases, which indicates that our approach is promising in dealing with TBC.

摘要

无线传感器的障碍覆盖旨在检测试图穿过特定区域的入侵者,而无线传感器则随机远程分布。本文考虑了具有可调范围的有限功率传感器,这些传感器沿线性区域部署以形成障碍来检测入侵事件。我们引入了三个目标来最小化:1)满足全覆盖时的总功耗;2)提高可靠性的活动传感器数量;3)保持公平性的活动传感器节点的最大感应范围。我们将该问题称为权衡障碍覆盖(TBC)问题。为了在这三个目标之间获得更好的权衡,我们提出了一个基于多目标进化算法(MOEA)/D 的多目标优化框架,称为特定于问题的 MOEA/D(PS-MOEA/D)。具体来说,我们定义了一种 2-元组编码方案,并引入了覆盖收缩算法来生成可行且相对最优的解决方案。随后,我们将特定于问题的知识纳入局部搜索中,允许搜索过程相互协作。通过考虑问题的特点,我们分析了复杂性,并将计算资源分配策略纳入我们的算法中。我们通过使用几种最常用的指标与四个竞争对手进行比较来验证我们的方法。实验结果表明,PS-MOEA/D 是有效的,在所有情况下都优于四个竞争对手,这表明我们的方法在处理 TBC 方面很有前途。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验