Huppertz Hans-Jürgen, Möller Leona, Südmeyer Martin, Hilker Rüdiger, Hattingen Elke, Egger Karl, Amtage Florian, Respondek Gesine, Stamelou Maria, Schnitzler Alfons, Pinkhardt Elmar H, Oertel Wolfgang H, Knake Susanne, Kassubek Jan, Höglinger Günter U
Swiss Epilepsy Centre, Klinik Lengg, Zurich, Switzerland.
Department of Neurology, University Hospital Gießen and Marburg, Marburg, Germany.
Mov Disord. 2016 Oct;31(10):1506-1517. doi: 10.1002/mds.26715.
Clinical differentiation of parkinsonian syndromes is still challenging.
A fully automated method for quantitative MRI analysis using atlas-based volumetry combined with support vector machine classification was evaluated for differentiation of parkinsonian syndromes in a multicenter study.
Atlas-based volumetry was performed on MRI data of healthy controls (n = 73) and patients with PD (204), PSP with Richardson's syndrome phenotype (106), MSA of the cerebellar type (21), and MSA of the Parkinsonian type (60), acquired on different scanners. Volumetric results were used as input for support vector machine classification of single subjects with leave-one-out cross-validation.
The largest atrophy compared to controls was found for PSP with Richardson's syndrome phenotype patients in midbrain (-15%), midsagittal midbrain tegmentum plane (-20%), and superior cerebellar peduncles (-13%), for MSA of the cerebellar type in pons (-33%), cerebellum (-23%), and middle cerebellar peduncles (-36%), and for MSA of the parkinsonian type in the putamen (-23%). The majority of binary support vector machine classifications between the groups resulted in balanced accuracies of >80%. With MSA of the cerebellar and parkinsonian type combined in one group, support vector machine classification of PD, PSP and MSA achieved sensitivities of 79% to 87% and specificities of 87% to 96%. Extraction of weighting factors confirmed that midbrain, basal ganglia, and cerebellar peduncles had the largest relevance for classification.
Brain volumetry combined with support vector machine classification allowed for reliable automated differentiation of parkinsonian syndromes on single-patient level even for MRI acquired on different scanners. © 2016 International Parkinson and Movement Disorder Society.
帕金森综合征的临床鉴别仍具有挑战性。
在一项多中心研究中,评估一种使用基于图谱的容积分析结合支持向量机分类的全自动MRI定量分析方法,用于帕金森综合征的鉴别。
对健康对照者(n = 73)以及帕金森病(PD)患者(204例)、具有理查森综合征表型的进行性核上性麻痹(PSP)患者(106例)、小脑型多系统萎缩(MSA)患者(21例)和帕金森型MSA患者(60例)的MRI数据进行基于图谱的容积分析,这些数据是在不同的扫描仪上采集的。容积分析结果用作支持向量机对单例受试者进行留一法交叉验证分类的输入。
与对照组相比,具有理查森综合征表型的PSP患者中脑萎缩最大(-15%)、矢状位中脑被盖平面萎缩最大(-20%)以及小脑上脚萎缩最大(-13%);小脑型MSA患者脑桥萎缩最大(-33%)、小脑萎缩最大(-23%)以及小脑中脚萎缩最大(-36%);帕金森型MSA患者壳核萎缩最大(-23%)。组间大多数二元支持向量机分类的平衡准确率>80%。将小脑型和帕金森型MSA合并为一组后,支持向量机对PD、PSP和MSA的分类敏感性为79%至87%,特异性为87%至96%。权重因子提取证实中脑、基底神经节和小脑脚对分类的相关性最大。
即使对于在不同扫描仪上采集的MRI,脑容积分析结合支持向量机分类也能在单例患者水平上可靠地自动鉴别帕金森综合征。© 2016国际帕金森病和运动障碍协会。