Meindl Tobias, Hapfelmeier Alexander, Mantel Tobias, Jochim Angela, Deppe Jonas, Zwirner Silke, Kirschke Jan S, Li Yong, Haslinger Bernhard
Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany.
Brain Behav. 2025 Jan;15(1):e70274. doi: 10.1002/brb3.70274.
While automated methods for differential diagnosis of parkinsonian syndromes based on MRI imaging have been introduced, their implementation in clinical practice still underlies considerable challenges.
To assess whether the performance of classifiers based on imaging derived biomarkers is improved with the addition of basic clinical information and to provide a practical solution to address the insecurity of classification results due to the uncertain clinical diagnosis they are based on.
Retro- and prospectively collected data from multimodal MRI and standardized clinical datasets of 229 patients with PD (n = 167), PSP (n = 44), or MSA (n = 18) underwent multinomial classification in a benchmark study comparing the performance of nine machine learning methods. A predictor space of imaging variables, either with or without clinical information, was investigated. Classification results were assessed using multiclass AUCs. Individual predicted probabilities were visualized to address diagnostic uncertainty.
Clinical diagnosis was accurately confirmed using machine learning models with only small differences when using imaging and clinical signs versus imaging variables only (expected multiclass AUC of 0.95 vs. 0.92). Still, multinomial classification is hampered by imbalanced class frequencies. The most discriminatory variables were responsiveness to levodopa, vertical gaze palsy, and the volumes of subcortical structures, including the red nucleus.
Machine-learning-assisted classification of MR-imaging biomarkers gathered in routine care can assist in the diagnosis of parkinsonian syndromes as part of the diagnostic workup. We provide a visual method that aids the interpretation of neuroimaging-based classification results of the three main parkinsonian syndromes, improving clinical interpretability.
虽然基于MRI成像的帕金森综合征鉴别诊断自动化方法已经出现,但它们在临床实践中的应用仍面临诸多挑战。
评估基于影像衍生生物标志物的分类器在添加基本临床信息后性能是否得到改善,并提供一种切实可行的解决方案,以解决由于分类结果所基于的临床诊断不确定而导致的分类结果不安全性问题。
在一项基准研究中,对229例帕金森病(PD,n = 167)、进行性核上性麻痹(PSP,n = 44)或多系统萎缩(MSA,n = 18)患者的多模态MRI和标准化临床数据集进行回顾性和前瞻性收集的数据,比较9种机器学习方法的性能,进行多项分类。研究了有无临床信息的影像变量预测空间。使用多类AUC评估分类结果。对个体预测概率进行可视化以解决诊断不确定性。
使用机器学习模型能准确确认临床诊断,仅使用影像和临床体征与仅使用影像变量时差异很小(预期多类AUC分别为0.95和0.92)。然而,多项分类仍受到类频率不平衡的阻碍。最具鉴别力的变量是对左旋多巴的反应性、垂直凝视麻痹以及包括红核在内的皮质下结构体积。
在常规护理中收集的机器学习辅助的MR成像生物标志物分类可作为诊断检查的一部分,辅助帕金森综合征的诊断。我们提供了一种可视化方法,有助于解释三种主要帕金森综合征基于神经影像的分类结果,提高临床可解释性。