Suppr超能文献

用于系统特征选择的博弈论方法;在重症监护病房误报检测中的应用。

Game Theoretic Approach for Systematic Feature Selection; Application in False Alarm Detection in Intensive Care Units.

作者信息

Afghah Fatemeh, Razi Abolfazl, Soroushmehr Reza, Ghanbari Hamid, Najarian Kayvan

机构信息

School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA.

Department of Emergency Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Entropy (Basel). 2018 Mar 12;20(3):190. doi: 10.3390/e20030190.

Abstract

Intensive Care Units (ICUs) are equipped with many sophisticated sensors and monitoring devices to provide the highest quality of care for critically ill patients. However, these devices might generate false alarms that reduce standard of care and result in desensitization of caregivers to alarms. Therefore, reducing the number of false alarms is of great importance. Many approaches such as signal processing and machine learning, and designing more accurate sensors have been developed for this purpose. However, the significant intrinsic correlation among the extracted features from different sensors has been mostly overlooked. A majority of current data mining techniques fail to capture such correlation among the collected signals from different sensors that limits their alarm recognition capabilities. Here, we propose a novel information-theoretic predictive modeling technique based on the idea of coalition game theory to enhance the accuracy of false alarm detection in ICUs by accounting for the synergistic power of signal attributes in the feature selection stage. This approach brings together techniques from information theory and game theory to account for inter-features mutual information in determining the most correlated predictors with respect to false alarm by calculating Banzhaf power of each feature. The numerical results show that the proposed method can enhance classification accuracy and improve the area under the ROC (receiver operating characteristic) curve compared to other feature selection techniques, when integrated in classifiers such as Bayes-Net that consider inter-features dependencies.

摘要

重症监护病房(ICU)配备了许多精密的传感器和监测设备,以为重症患者提供最高质量的护理。然而,这些设备可能会产生误报,从而降低护理标准,并导致护理人员对警报产生麻木。因此,减少误报数量至关重要。为此,已经开发了许多方法,如信号处理和机器学习,以及设计更精确的传感器。然而,不同传感器提取的特征之间存在的显著内在相关性大多被忽视了。大多数当前的数据挖掘技术无法捕捉来自不同传感器的采集信号之间的这种相关性,这限制了它们的警报识别能力。在此,我们基于联盟博弈论的思想提出一种新颖的信息论预测建模技术,通过在特征选择阶段考虑信号属性的协同作用来提高ICU中误报检测的准确性。这种方法将信息论和博弈论的技术结合起来,通过计算每个特征的班扎夫权力,在确定与误报最相关的预测变量时考虑特征间的互信息。数值结果表明,与其他特征选择技术相比,当该方法集成到诸如考虑特征间依赖性的贝叶斯网络等分类器中时,可以提高分类准确率并改善ROC(接收器操作特性)曲线下的面积。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ab6/7512707/e59842d9a205/entropy-20-00190-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验