Shiinoki Takehiro, Kawamura Shinji, Uehara Takuya, Yuasa Yuki, Fujimoto Koya, Koike Masahiro, Sera Tatsuhiro, Emoto Yuki, Hanazawa Hideki, Shibuya Keiko
Graduate School of Medicine, Yamaguchi University.
J Appl Clin Med Phys. 2016 Jul 8;17(4):202-213. doi: 10.1120/jacmp.v17i4.6114.
A combined system comprising the TrueBeam linear accelerator and a new real-time, tumor-tracking radiotherapy system, SyncTraX, was installed in our institution. The goals of this study were to assess the capability of SyncTraX in measuring the position of a fiducial marker using color fluoroscopic images, and to evaluate the dosimetric and geometric accuracy of respiratory-gated radiotherapy using this combined system for the simple geometry. For the fundamental evaluation of respiratory-gated radiotherapy using SyncTraX, the following were performed:1) determination of dosimetric and positional characteristics of sinusoidal patterns using a motor-driven base for several gating windows; 2) measurement of time delay using an oscilloscope; 3) positional verification of sinusoidal patterns and the pattern in the case of a lung cancer patient; 4) measurement of the half-value layer (HVL in mm AL), effective kVp, and air kerma, using a solid-state detector for each fluoroscopic condition, to determine the patient dose. The dose profile in a moving phantom with gated radiotherapy having a gating window ≤ 4 mm was in good agreement with that under static conditions for each photon beam. The total time delay between TrueBeam and SyncTraX was < 227 ms for each photon beam. The mean of the positional tracking error was < 0.4 mm for sinusoidal patterns and for the pattern in the case of a lung cancer patient. The air-kerma rates from one fluoroscopy direction were 1.93 ± 0.01, 2.86 ± 0.01, 3.92 ± 0.04, 5.28 ± 0.03, and 6.60 ± 0.05 mGy/min for 70, 80, 90, 100, and 110 kV X-ray beams at 80 mA, respectively. The combined system comprising TrueBeam and SyncTraX could track the motion of the fiducial marker and control radiation delivery with reasonable accuracy; therefore, this system provides significant dosimetric improvement. However, patient exposure dose from fluoroscopy was not clinically negligible.
我们机构安装了一个由TrueBeam直线加速器和新型实时肿瘤跟踪放射治疗系统SyncTraX组成的联合系统。本研究的目的是评估SyncTraX使用彩色荧光透视图像测量基准标记位置的能力,并使用该联合系统针对简单几何形状评估呼吸门控放射治疗的剂量学和几何精度。为了对使用SyncTraX的呼吸门控放射治疗进行基础评估,开展了以下工作:1)使用电机驱动底座针对多个门控窗口确定正弦模式的剂量学和位置特征;2)使用示波器测量时间延迟;3)对正弦模式以及肺癌患者情况下的模式进行位置验证;4)针对每种荧光透视条件,使用固态探测器测量半值层(以铝毫米为单位的HVL)、有效千伏峰值和空气比释动能,以确定患者剂量。对于每个光子束,门控窗口≤4毫米的门控放射治疗在移动体模中的剂量分布与静态条件下的剂量分布高度一致。每个光子束在TrueBeam和SyncTraX之间的总时间延迟<227毫秒。正弦模式以及肺癌患者情况下的模式的位置跟踪误差平均值<0.4毫米。在80毫安时,70、80、90、100和110千伏X射线束从一个荧光透视方向的空气比释动能率分别为1.93±0.01、2.86±0.01、3.92±0.04、5.28±0.03和6.60±0.05毫戈瑞/分钟。由TrueBeam和SyncTraX组成的联合系统能够以合理的精度跟踪基准标记的运动并控制放射治疗的实施;因此,该系统在剂量学方面有显著改善。然而,荧光透视对患者的照射剂量在临床上不可忽略。