Suppr超能文献

基于加权优化的协作传感器网络中非线性目标跟踪分布式卡尔曼滤波器。

Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks.

出版信息

IEEE Trans Cybern. 2017 Nov;47(11):3892-3905. doi: 10.1109/TCYB.2016.2587723. Epub 2016 Jul 21.

Abstract

The identification of the nonlinearity and coupling is crucial in nonlinear target tracking problem in collaborative sensor networks. According to the adaptive Kalman filtering (KF) method, the nonlinearity and coupling can be regarded as the model noise covariance, and estimated by minimizing the innovation or residual errors of the states. However, the method requires large time window of data to achieve reliable covariance measurement, making it impractical for nonlinear systems which are rapidly changing. To deal with the problem, a weighted optimization-based distributed KF algorithm (WODKF) is proposed in this paper. The algorithm enlarges the data size of each sensor by the received measurements and state estimates from its connected sensors instead of the time window. A new cost function is set as the weighted sum of the bias and oscillation of the state to estimate the "best" estimate of the model noise covariance. The bias and oscillation of the state of each sensor are estimated by polynomial fitting a time window of state estimates and measurements of the sensor and its neighbors weighted by the measurement noise covariance. The best estimate of the model noise covariance is computed by minimizing the weighted cost function using the exhaustive method. The sensor selection method is in addition to the algorithm to decrease the computation load of the filter and increase the scalability of the sensor network. The existence, suboptimality and stability analysis of the algorithm are given. The local probability data association method is used in the proposed algorithm for the multitarget tracking case. The algorithm is demonstrated in simulations on tracking examples for a random signal, one nonlinear target, and four nonlinear targets. Results show the feasibility and superiority of WODKF against other filtering algorithms for a large class of systems.

摘要

在协作传感器网络中的非线性目标跟踪问题中,识别非线性和耦合至关重要。根据自适应卡尔曼滤波(KF)方法,可以将非线性和耦合视为模型噪声协方差,并通过最小化状态的创新或残差误差来估计。然而,该方法需要大量的数据时间窗口来实现可靠的协方差测量,因此对于快速变化的非线性系统来说是不切实际的。为了解决这个问题,本文提出了一种基于加权优化的分布式 KF 算法(WODKF)。该算法通过接收来自连接传感器的测量值和状态估计值来扩大每个传感器的数据大小,而不是使用时间窗口。新的代价函数设置为状态的偏差和振荡的加权和,以估计模型噪声协方差的“最佳”估计。通过对传感器及其邻居的测量噪声协方差进行加权的状态估计值和测量值进行多项式拟合,估计每个传感器的状态的偏差和振荡。通过使用穷举法最小化加权代价函数来计算模型噪声协方差的最佳估计值。此外,还提出了一种传感器选择方法来降低滤波器的计算负载并提高传感器网络的可扩展性。给出了算法的存在性、次优性和稳定性分析。在提出的算法中,对于多目标跟踪情况,使用局部概率数据关联方法。在跟踪随机信号、一个非线性目标和四个非线性目标的示例仿真中验证了该算法。结果表明,WODKF 对于一大类系统具有比其他滤波算法更优的可行性。

相似文献

1
Weighted Optimization-Based Distributed Kalman Filter for Nonlinear Target Tracking in Collaborative Sensor Networks.
IEEE Trans Cybern. 2017 Nov;47(11):3892-3905. doi: 10.1109/TCYB.2016.2587723. Epub 2016 Jul 21.
2
Adaptive Unscented Kalman Filter for Target Tracking with Unknown Time-Varying Noise Covariance.
Sensors (Basel). 2019 Mar 19;19(6):1371. doi: 10.3390/s19061371.
3
Centralized Multi-Sensor Square Root Cubature Joint Probabilistic Data Association.
Sensors (Basel). 2017 Nov 5;17(11):2546. doi: 10.3390/s17112546.
6
Distributed Particle Filter for Target Tracking: With Reduced Sensor Communications.
Sensors (Basel). 2016 Sep 9;16(9):1454. doi: 10.3390/s16091454.
7
Improved Spatial Registration and Target Tracking Method for Sensors on Multiple Missiles.
Sensors (Basel). 2018 May 27;18(6):1723. doi: 10.3390/s18061723.
8
Adaptive Fifth-Degree Cubature Information Filter for Multi-Sensor Bearings-Only Tracking.
Sensors (Basel). 2018 Sep 26;18(10):3241. doi: 10.3390/s18103241.
9
SVM+KF Target Tracking Strategy Using the Signal Strength in Wireless Sensor Networks.
Sensors (Basel). 2020 Jul 9;20(14):3832. doi: 10.3390/s20143832.
10
On the Identification of Noise Covariances and Adaptive Kalman Filtering: A New Look at a 50 Year-Old Problem.
IEEE Access. 2020;8:59362-59388. doi: 10.1109/access.2020.2982407. Epub 2020 Mar 23.

引用本文的文献

1
A Novel Variational Bayesian Method with Unknown Noise for Underwater INS/DVL/USBL Localization.
Sensors (Basel). 2025 Jun 13;25(12):3708. doi: 10.3390/s25123708.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验