Ribas Vicent, García-Ruiz Carmen, Fernández-Checa José C
Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC), Barcelona, Spain.
Liver Unit-Hospital Clínic, Centre Esther Koplowitz, IDIBAPS, CIBEREHD, Planta Cuarta, C/Rosselló 149, Barcelona, 08036, Spain.
Clin Transl Med. 2016 Dec;5(1):22. doi: 10.1186/s40169-016-0106-5. Epub 2016 Jul 25.
Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways.
鉴于线粒体在氧气消耗、新陈代谢和细胞死亡调控中的作用,线粒体功能的改变或细胞死亡途径的失调会促进癌症的发生和发展。癌细胞表现出一系列由突变诱导的代谢转变,这些突变导致癌基因功能获得和肿瘤抑制基因功能丧失,包括葡萄糖消耗增加、线粒体呼吸减少、活性氧生成增加和细胞死亡抗性增强,所有这些都确保了癌症的进展。癌细胞中的胆固醇代谢受到干扰,并支持不受控制的细胞生长。特别是,线粒体中胆固醇的积累成为一种分子成分,通过损害线粒体功能来协调癌细胞中的一些代谢改变。因此,癌细胞中的线粒体胆固醇负载可能部分促成了瓦伯格效应,刺激有氧糖酵解以满足增殖细胞的能量需求,同时由于线粒体膜动力学的变化保护癌细胞免受线粒体凋亡。进一步了解癌细胞代谢改变的复杂性,这在很大程度上是由线粒体功能的改变介导的,可能为确定更有效的癌症治疗策略铺平道路,这些策略涉及使用针对线粒体、胆固醇稳态/运输和特定代谢途径的小分子。