Suppr超能文献

线粒体、胆固醇与癌细胞代谢

Mitochondria, cholesterol and cancer cell metabolism.

作者信息

Ribas Vicent, García-Ruiz Carmen, Fernández-Checa José C

机构信息

Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Cientificas (CSIC), Barcelona, Spain.

Liver Unit-Hospital Clínic, Centre Esther Koplowitz, IDIBAPS, CIBEREHD, Planta Cuarta, C/Rosselló 149, Barcelona, 08036, Spain.

出版信息

Clin Transl Med. 2016 Dec;5(1):22. doi: 10.1186/s40169-016-0106-5. Epub 2016 Jul 25.

Abstract

Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways.

摘要

鉴于线粒体在氧气消耗、新陈代谢和细胞死亡调控中的作用,线粒体功能的改变或细胞死亡途径的失调会促进癌症的发生和发展。癌细胞表现出一系列由突变诱导的代谢转变,这些突变导致癌基因功能获得和肿瘤抑制基因功能丧失,包括葡萄糖消耗增加、线粒体呼吸减少、活性氧生成增加和细胞死亡抗性增强,所有这些都确保了癌症的进展。癌细胞中的胆固醇代谢受到干扰,并支持不受控制的细胞生长。特别是,线粒体中胆固醇的积累成为一种分子成分,通过损害线粒体功能来协调癌细胞中的一些代谢改变。因此,癌细胞中的线粒体胆固醇负载可能部分促成了瓦伯格效应,刺激有氧糖酵解以满足增殖细胞的能量需求,同时由于线粒体膜动力学的变化保护癌细胞免受线粒体凋亡。进一步了解癌细胞代谢改变的复杂性,这在很大程度上是由线粒体功能的改变介导的,可能为确定更有效的癌症治疗策略铺平道路,这些策略涉及使用针对线粒体、胆固醇稳态/运输和特定代谢途径的小分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/016c/4960093/ffadb2c1f7db/40169_2016_106_Fig1_HTML.jpg

相似文献

1
Mitochondria, cholesterol and cancer cell metabolism.
Clin Transl Med. 2016 Dec;5(1):22. doi: 10.1186/s40169-016-0106-5. Epub 2016 Jul 25.
2
The Involvement of PPARs in the Peculiar Energetic Metabolism of Tumor Cells.
Int J Mol Sci. 2018 Jun 29;19(7):1907. doi: 10.3390/ijms19071907.
3
Mitochondria in cancer: at the crossroads of life and death.
Chin J Cancer. 2011 Aug;30(8):526-39. doi: 10.5732/cjc.011.10018.
4
Mitochondrial metabolism-mediated redox regulation in cancer progression.
Redox Biol. 2021 Jun;42:101870. doi: 10.1016/j.redox.2021.101870. Epub 2021 Jan 21.
6
The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
Int J Radiat Biol. 2019 Jul;95(7):912-919. doi: 10.1080/09553002.2019.1589653. Epub 2019 Mar 22.
7
Mitochondrial biogenesis: pharmacological approaches.
Curr Pharm Des. 2014;20(35):5507-9. doi: 10.2174/138161282035140911142118.
10
Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
Semin Oncol. 2014 Apr;41(2):195-216. doi: 10.1053/j.seminoncol.2014.03.002. Epub 2014 Mar 5.

引用本文的文献

1
Non-Coding RNAs as Critical Modulators of Cholesterol Metabolism in Cancer.
Biomedicines. 2025 Jul 3;13(7):1631. doi: 10.3390/biomedicines13071631.
9
Targeting NPC1 in Renal Cell Carcinoma.
Cancers (Basel). 2024 Jan 25;16(3):517. doi: 10.3390/cancers16030517.
10
Mitochondrial Functionality Is Regulated by Alkylphospholipids in Human Colon Cancer Cells.
Biology (Basel). 2023 Nov 22;12(12):1457. doi: 10.3390/biology12121457.

本文引用的文献

1
The Role of Cholesterol in Cancer.
Cancer Res. 2016 Apr 15;76(8):2063-70. doi: 10.1158/0008-5472.CAN-15-2613. Epub 2016 Apr 5.
2
BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation.
Cell. 2016 Apr 7;165(2):421-33. doi: 10.1016/j.cell.2016.02.026. Epub 2016 Mar 3.
4
PKLR promotes colorectal cancer liver colonization through induction of glutathione synthesis.
J Clin Invest. 2016 Feb;126(2):681-94. doi: 10.1172/JCI83587. Epub 2016 Jan 19.
5
Evolving Lessons on the Complex Role of AMPK in Normal Physiology and Cancer.
Trends Pharmacol Sci. 2016 Mar;37(3):192-206. doi: 10.1016/j.tips.2015.11.007. Epub 2015 Dec 20.
6
The Tumorigenic Roles of the Cellular REDOX Regulatory Systems.
Oxid Med Cell Longev. 2016;2016:8413032. doi: 10.1155/2016/8413032. Epub 2015 Nov 22.
7
Breast Cancer Metabolism and Mitochondrial Activity: The Possibility of Chemoprevention with Metformin.
Biomed Res Int. 2015;2015:972193. doi: 10.1155/2015/972193. Epub 2015 Oct 28.
8
Statins and cancers.
Contemp Oncol (Pozn). 2015;19(3):167-75. doi: 10.5114/wo.2014.44294. Epub 2014 Aug 29.
9
Oxidative stress inhibits distant metastasis by human melanoma cells.
Nature. 2015 Nov 12;527(7577):186-91. doi: 10.1038/nature15726. Epub 2015 Oct 14.
10
MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1251-7. doi: 10.1093/nar/gkv1003. Epub 2015 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验