Suppr超能文献

癌症生物能量学的整体观点:线粒体功能和呼吸作用在多种肿瘤的发生和发展中起着基础性作用。

A holistic view of cancer bioenergetics: mitochondrial function and respiration play fundamental roles in the development and progression of diverse tumors.

作者信息

Alam Md Maksudul, Lal Sneha, FitzGerald Keely E, Zhang Li

机构信息

Department of Biological Sciences, University of Texas at Dallas, Mail Stop RL11, 800 W, Campbell Road, Richardson, TX, 75080, USA.

出版信息

Clin Transl Med. 2016 Mar;5(1):3. doi: 10.1186/s40169-016-0082-9. Epub 2016 Jan 26.

Abstract

Since Otto Warburg made the first observation that tumor cells exhibit altered metabolism and bioenergetics in the 1920s, many scientists have tried to further the understanding of tumor bioenergetics. Particularly, in the past decade, the application of the state-of the-art metabolomics and genomics technologies has revealed the remarkable plasticity of tumor metabolism and bioenergetics. Firstly, a wide array of tumor cells have been shown to be able to use not only glucose, but also glutamine for generating cellular energy, reducing power, and metabolic building blocks for biosynthesis. Secondly, many types of cancer cells generate most of their cellular energy via mitochondrial respiration and oxidative phosphorylation. Glutamine is the preferred substrate for oxidative phosphorylation in tumor cells. Thirdly, tumor cells exhibit remarkable versatility in using bioenergetics substrates. Notably, tumor cells can use metabolic substrates donated by stromal cells for cellular energy generation via oxidative phosphorylation. Further, it has been shown that mitochondrial transfer is a critical mechanism for tumor cells with defective mitochondria to restore oxidative phosphorylation. The restoration is necessary for tumor cells to gain tumorigenic and metastatic potential. It is also worth noting that heme is essential for the biogenesis and proper functioning of mitochondrial respiratory chain complexes. Hence, it is not surprising that recent experimental data showed that heme flux and function are elevated in non-small cell lung cancer (NSCLC) cells and that elevated heme function promotes intensified oxygen consumption, thereby fueling tumor cell proliferation and function. Finally, emerging evidence increasingly suggests that clonal evolution and tumor genetic heterogeneity contribute to bioenergetic versatility of tumor cells, as well as tumor recurrence and drug resistance. Although mutations are found only in several metabolic enzymes in tumors, diverse mutations in signaling pathways and networks can cause changes in the expression and activity of metabolic enzymes, which likely enable tumor cells to gain their bioenergetic versatility. A better understanding of tumor bioenergetics should provide a more holistic approach to investigate cancer biology and therapeutics. This review therefore attempts to comprehensively consider and summarize the experimental data supporting our latest view of cancer bioenergetics.

摘要

自20世纪20年代奥托·瓦尔堡首次观察到肿瘤细胞表现出代谢和生物能量学改变以来,许多科学家一直试图进一步了解肿瘤生物能量学。特别是在过去十年中,先进的代谢组学和基因组学技术的应用揭示了肿瘤代谢和生物能量学的显著可塑性。首先,已表明大量肿瘤细胞不仅能够利用葡萄糖,还能利用谷氨酰胺来产生细胞能量、还原力以及用于生物合成的代谢构件。其次,许多类型的癌细胞通过线粒体呼吸和氧化磷酸化产生大部分细胞能量。谷氨酰胺是肿瘤细胞中氧化磷酸化的首选底物。第三,肿瘤细胞在利用生物能量学底物方面表现出显著的多样性。值得注意的是,肿瘤细胞可以利用基质细胞提供的代谢底物通过氧化磷酸化产生细胞能量。此外,研究表明线粒体转移是线粒体有缺陷的肿瘤细胞恢复氧化磷酸化的关键机制。这种恢复对于肿瘤细胞获得致瘤和转移潜能是必要的。还值得注意的是,血红素对于线粒体呼吸链复合物的生物发生和正常功能至关重要。因此,最近的实验数据表明非小细胞肺癌(NSCLC)细胞中血红素通量和功能升高,且升高的血红素功能促进氧气消耗增加,从而推动肿瘤细胞增殖和功能,这并不奇怪。最后,越来越多的新证据表明克隆进化和肿瘤遗传异质性导致肿瘤细胞的生物能量学多样性以及肿瘤复发和耐药性。尽管在肿瘤中仅在几种代谢酶中发现了突变,但信号通路和网络中的各种突变可导致代谢酶的表达和活性发生变化,这可能使肿瘤细胞获得其生物能量学多样性。更好地理解肿瘤生物能量学应该为研究癌症生物学和治疗提供一种更全面的方法。因此,本综述试图全面考虑和总结支持我们对癌症生物能量学最新观点的实验数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b713/4728164/e44bceb712de/40169_2016_82_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验