Alexander-Webber J A, Huang J, Maude D K, Janssen T J B M, Tzalenchuk A, Antonov V, Yager T, Lara-Avila S, Kubatkin S, Yakimova R, Nicholas R J
Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom.
Laboratoire National des Champs Magnétiques Intenses, CNRS-UGA-UPS-INSA, 143, avenue de Rangueil, 31400 Toulouse, France.
Sci Rep. 2016 Jul 26;6:30296. doi: 10.1038/srep30296.
Epitaxial graphene has proven itself to be the best candidate for quantum electrical resistance standards due to its wide quantum Hall plateaus with exceptionally high breakdown currents. However one key underlying mechanism, a magnetic field dependent charge transfer process, is yet to be fully understood. Here we report measurements of the quantum Hall effect in epitaxial graphene showing the widest quantum Hall plateau observed to date extending over 50 T, attributed to an almost linear increase in carrier density with magnetic field. This behaviour is strong evidence for field dependent charge transfer from charge reservoirs with exceptionally high densities of states in close proximity to the graphene. Using a realistic framework of broadened Landau levels we model the densities of donor states and predict the field dependence of charge transfer in excellent agreement with experimental results, thus providing a guide towards engineering epitaxial graphene for applications such as quantum metrology.
由于外延石墨烯具有宽量子霍尔平台和极高的击穿电流,它已被证明是量子电阻标准的最佳候选材料。然而,一个关键的潜在机制,即磁场依赖的电荷转移过程,尚未得到充分理解。在此,我们报告了外延石墨烯中量子霍尔效应的测量结果,显示出迄今为止观察到的最宽量子霍尔平台,其跨越超过50 T,这归因于载流子密度随磁场几乎呈线性增加。这种行为有力地证明了存在磁场依赖的电荷转移,电荷来自于紧邻石墨烯的具有极高态密度的电荷库。我们使用展宽朗道能级的实际框架对施主态密度进行建模,并预测电荷转移的磁场依赖性,与实验结果高度吻合,从而为设计用于量子计量等应用的外延石墨烯提供了指导。