Suppr超能文献

Gαi1中保守的疏水核心调节G蛋白激活及从活化受体的释放。

A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor.

作者信息

Kaya Ali I, Lokits Alyssa D, Gilbert James A, Iverson T M, Meiler Jens, Hamm Heidi E

机构信息

From the Departments of Pharmacology.

Neuroscience.

出版信息

J Biol Chem. 2016 Sep 9;291(37):19674-86. doi: 10.1074/jbc.M116.745513. Epub 2016 Jul 26.

Abstract

G protein-coupled receptor-mediated heterotrimeric G protein activation is a major mode of signal transduction in the cell. Previously, we and other groups reported that the α5 helix of Gαi1, especially the hydrophobic interactions in this region, plays a key role during nucleotide release and G protein activation. To further investigate the effect of this hydrophobic core, we disrupted it in Gαi1 by inserting 4 alanine amino acids into the α5 helix between residues Gln(333) and Phe(334) (Ins4A). This extends the length of the α5 helix without disturbing the β6-α5 loop interactions. This mutant has high basal nucleotide exchange activity yet no receptor-mediated activation of nucleotide exchange. By using structural approaches, we show that this mutant loses critical hydrophobic interactions, leading to significant rearrangements of side chain residues His(57), Phe(189), Phe(191), and Phe(336); it also disturbs the rotation of the α5 helix and the π-π interaction between His(57) and Phe(189) In addition, the insertion mutant abolishes G protein release from the activated receptor after nucleotide binding. Our biochemical and computational data indicate that the interactions between α5, α1, and β2-β3 are not only vital for GDP release during G protein activation, but they are also necessary for proper GTP binding (or GDP rebinding). Thus, our studies suggest that this hydrophobic interface is critical for accurate rearrangement of the α5 helix for G protein release from the receptor after GTP binding.

摘要

G蛋白偶联受体介导的异源三聚体G蛋白激活是细胞信号转导的主要模式。此前,我们和其他研究小组报道,Gαi1的α5螺旋,尤其是该区域的疏水相互作用,在核苷酸释放和G蛋白激活过程中起关键作用。为了进一步研究这个疏水核心的作用,我们通过在Gαi1的α5螺旋中位于谷氨酰胺(333)和苯丙氨酸(334)之间插入4个丙氨酸氨基酸(Ins4A)来破坏它。这延长了α5螺旋的长度,同时不干扰β6-α5环的相互作用。该突变体具有较高的基础核苷酸交换活性,但没有受体介导的核苷酸交换激活。通过结构方法,我们表明该突变体失去了关键的疏水相互作用,导致侧链残基组氨酸(57)、苯丙氨酸(189)、苯丙氨酸(191)和苯丙氨酸(336)发生显著重排;它还扰乱了α5螺旋的旋转以及组氨酸(57)和苯丙氨酸(189)之间的π-π相互作用。此外,插入突变体在核苷酸结合后阻止了G蛋白从活化受体上释放。我们的生化和计算数据表明,α5、α1和β2-β3之间的相互作用不仅对G蛋白激活过程中的GDP释放至关重要,而且对正确的GTP结合(或GDP重新结合)也是必需的。因此,我们的研究表明,这个疏水界面对于GTP结合后G蛋白从受体上释放时α5螺旋的精确重排至关重要。

相似文献

1
A Conserved Hydrophobic Core in Gαi1 Regulates G Protein Activation and Release from Activated Receptor.
J Biol Chem. 2016 Sep 9;291(37):19674-86. doi: 10.1074/jbc.M116.745513. Epub 2016 Jul 26.
2
A conserved phenylalanine as a relay between the α5 helix and the GDP binding region of heterotrimeric Gi protein α subunit.
J Biol Chem. 2014 Aug 29;289(35):24475-87. doi: 10.1074/jbc.M114.572875. Epub 2014 Jul 18.
3
Structural evidence for a sequential release mechanism for activation of heterotrimeric G proteins.
J Mol Biol. 2009 Nov 6;393(4):882-97. doi: 10.1016/j.jmb.2009.08.043. Epub 2009 Aug 22.
8
The nucleotide-free state of heterotrimeric G proteins α-subunit adopts a highly stable conformation.
FEBS J. 2017 Aug;284(15):2464-2481. doi: 10.1111/febs.14143. Epub 2017 Jul 2.
9
Structural and kinetic modeling of an activating helix switch in the rhodopsin-transducin interface.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10660-5. doi: 10.1073/pnas.0900072106. Epub 2009 Jun 17.
10
Effect of N-Terminal Myristoylation on the Active Conformation of Gα-GTP.
Biochemistry. 2017 Jan 10;56(1):271-280. doi: 10.1021/acs.biochem.6b00388. Epub 2016 Dec 29.

引用本文的文献

1
Dominant Gα mutations in human disease: unifying mechanisms and treatment strategies.
EMBO Mol Med. 2025 Jul 31. doi: 10.1038/s44321-025-00274-8.
3
A neurodevelopmental disorder mutation locks G proteins in the transitory pre-activated state.
Nat Commun. 2024 Aug 5;15(1):6643. doi: 10.1038/s41467-024-50964-z.
4
Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions.
EMBO J. 2024 Aug;43(15):3175-3191. doi: 10.1038/s44318-024-00142-0. Epub 2024 Jun 17.
6
Structural basis of omega-3 fatty acid receptor FFAR4 activation and G protein coupling selectivity.
Cell Res. 2023 Aug;33(8):644-647. doi: 10.1038/s41422-023-00835-x. Epub 2023 Jun 7.
7
Structures of Ric-8B in complex with Gα protein folding clients reveal isoform specificity mechanisms.
Structure. 2023 May 4;31(5):553-564.e7. doi: 10.1016/j.str.2023.02.011. Epub 2023 Mar 16.
8
The role of G protein conformation in receptor-G protein selectivity.
Nat Chem Biol. 2023 Jun;19(6):687-694. doi: 10.1038/s41589-022-01231-z. Epub 2023 Jan 16.
9
Stickier G-protein conformations.
Nat Chem Biol. 2023 Jun;19(6):665-666. doi: 10.1038/s41589-022-01239-5.
10
The Conformational Dynamics of Heterotrimeric G Proteins During GPCR-Mediated Activation.
Subcell Biochem. 2022;99:271-284. doi: 10.1007/978-3-031-00793-4_8.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Probing Gαi1 protein activation at single-amino acid resolution.
Nat Struct Mol Biol. 2015 Sep;22(9):686-694. doi: 10.1038/nsmb.3070. Epub 2015 Aug 10.
3
Universal allosteric mechanism for Gα activation by GPCRs.
Nature. 2015 Aug 13;524(7564):173-179. doi: 10.1038/nature14663. Epub 2015 Jul 6.
4
SIGNAL TRANSDUCTION. Structural basis for nucleotide exchange in heterotrimeric G proteins.
Science. 2015 Jun 19;348(6241):1361-5. doi: 10.1126/science.aaa5264.
5
A conserved phenylalanine as a relay between the α5 helix and the GDP binding region of heterotrimeric Gi protein α subunit.
J Biol Chem. 2014 Aug 29;289(35):24475-87. doi: 10.1074/jbc.M114.572875. Epub 2014 Jul 18.
6
Energetic analysis of the rhodopsin-G-protein complex links the α5 helix to GDP release.
Nat Struct Mol Biol. 2014 Jan;21(1):56-63. doi: 10.1038/nsmb.2705. Epub 2013 Dec 1.
7
Relaxation of backbone bond geometry improves protein energy landscape modeling.
Protein Sci. 2014 Jan;23(1):47-55. doi: 10.1002/pro.2389.
8
Eukaryotic G protein signaling evolved to require G protein-coupled receptors for activation.
Sci Signal. 2013 May 21;6(276):ra37. doi: 10.1126/scisignal.2003768.
9
Linking receptor activation to changes in Sw I and II of Gα proteins.
J Struct Biol. 2013 Oct;184(1):63-74. doi: 10.1016/j.jsb.2013.02.016. Epub 2013 Mar 4.
10
Myristoylation exerts direct and allosteric effects on Gα conformation and dynamics in solution.
Biochemistry. 2012 Mar 6;51(9):1911-24. doi: 10.1021/bi201472c. Epub 2012 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验