School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
School of Science, Wuhan University of Technology, Wuhan, Hubei, 430070, China.
J Neurosci Methods. 2024 Nov;411:110275. doi: 10.1016/j.jneumeth.2024.110275. Epub 2024 Sep 4.
There is growing interest in understanding the dynamic functional connectivity (DFC) between distributed brain regions. However, it remains challenging to reliably estimate the temporal dynamics from resting-state functional magnetic resonance imaging (rs-fMRI) due to the limitations of current methods.
We propose a new model called HDP-HSMM-BPCA for sparse DFC analysis of high-dimensional rs-fMRI data, which is a temporal extension of probabilistic principal component analysis using Bayesian nonparametric hidden semi-Markov model (HSMM). Specifically, we utilize a hierarchical Dirichlet process (HDP) prior to remove the parametric assumption of the HMM framework, overcoming the limitations of the standard HMM. An attractive superiority is its ability to automatically infer the state-specific latent space dimensionality within the Bayesian formulation.
The experiment results of synthetic data show that our model outperforms the competitive models with relatively higher estimation accuracy. In addition, the proposed framework is applied to real rs-fMRI data to explore sparse DFC patterns. The findings indicate that there is a time-varying underlying structure and sparse DFC patterns in high-dimensional rs-fMRI data.
Compared with the existing DFC approaches based on HMM, our method overcomes the limitations of standard HMM. The observation model of HDP-HSMM-BPCA can discover the underlying temporal structure of rs-fMRI data. Furthermore, the relevant sparse DFC construction algorithm provides a scheme for estimating sparse DFC.
We describe a new computational framework for sparse DFC analysis to discover the underlying temporal structure of rs-fMRI data, which will facilitate the study of brain functional connectivity.
理解分布式脑区之间动态功能连接(DFC)的兴趣日益浓厚。然而,由于当前方法的局限性,从静息态功能磁共振成像(rs-fMRI)中可靠地估计时间动态仍然具有挑战性。
我们提出了一种称为 HDP-HSMM-BPCA 的新模型,用于高维 rs-fMRI 数据的稀疏 DFC 分析,这是使用贝叶斯非参数隐半马尔可夫模型(HSMM)对概率主成分分析的时间扩展。具体来说,我们利用分层狄利克雷过程(HDP)先验来消除 HMM 框架的参数假设,克服了标准 HMM 的局限性。一个吸引人的优势是它能够在贝叶斯公式内自动推断特定状态的潜在空间维度。
合成数据的实验结果表明,我们的模型相对于竞争模型具有相对较高的估计精度。此外,所提出的框架被应用于真实的 rs-fMRI 数据以探索稀疏 DFC 模式。研究结果表明,高维 rs-fMRI 数据中存在时变的潜在结构和稀疏的 DFC 模式。
与基于 HMM 的现有 DFC 方法相比,我们的方法克服了标准 HMM 的局限性。HDP-HSMM-BPCA 的观测模型可以发现 rs-fMRI 数据的潜在时间结构。此外,相关的稀疏 DFC 构建算法为估计稀疏 DFC 提供了一种方案。
我们描述了一种用于稀疏 DFC 分析的新计算框架,以发现 rs-fMRI 数据的潜在时间结构,这将有助于研究大脑功能连接。