Suppr超能文献

大数据化学:化学领域大数据分析的挑战与机遇

BIGCHEM: Challenges and Opportunities for Big Data Analysis in Chemistry.

作者信息

Tetko Igor V, Engkvist Ola, Koch Uwe, Reymond Jean-Louis, Chen Hongming

机构信息

Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Institute of Structural Biology, Ingolstädter Landstraße 1, b. 60w, D-85764, Neuherberg, Germany.

BIGCHEM GmbH, Ingolstädter Landstraße 1, b. 60w, D-85764, Neuherberg, Germany.

出版信息

Mol Inform. 2016 Dec;35(11-12):615-621. doi: 10.1002/minf.201600073. Epub 2016 Jul 28.

Abstract

The increasing volume of biomedical data in chemistry and life sciences requires the development of new methods and approaches for their handling. Here, we briefly discuss some challenges and opportunities of this fast growing area of research with a focus on those to be addressed within the BIGCHEM project. The article starts with a brief description of some available resources for "Big Data" in chemistry and a discussion of the importance of data quality. We then discuss challenges with visualization of millions of compounds by combining chemical and biological data, the expectations from mining the "Big Data" using advanced machine-learning methods, and their applications in polypharmacology prediction and target de-convolution in phenotypic screening. We show that the efficient exploration of billions of molecules requires the development of smart strategies. We also address the issue of secure information sharing without disclosing chemical structures, which is critical to enable bi-party or multi-party data sharing. Data sharing is important in the context of the recent trend of "open innovation" in pharmaceutical industry, which has led to not only more information sharing among academics and pharma industries but also the so-called "precompetitive" collaboration between pharma companies. At the end we highlight the importance of education in "Big Data" for further progress of this area.

摘要

化学和生命科学领域生物医学数据量的不断增加,需要开发新的方法和途径来处理这些数据。在此,我们简要讨论这一快速发展的研究领域的一些挑战和机遇,重点关注BIGCHEM项目中需要解决的问题。本文首先简要介绍了化学领域中一些可用的“大数据”资源,并讨论了数据质量的重要性。然后,我们讨论了通过结合化学和生物学数据对数百万种化合物进行可视化的挑战、使用先进机器学习方法挖掘“大数据”的期望,以及它们在多药理学预测和表型筛选中的靶点反卷积中的应用。我们表明,对数以十亿计的分子进行有效探索需要开发智能策略。我们还讨论了在不披露化学结构的情况下进行安全信息共享的问题,这对于实现双方或多方数据共享至关重要。在制药行业“开放创新”的最新趋势背景下,数据共享很重要,这不仅导致学术界和制药行业之间更多的信息共享,还促成了制药公司之间所谓的“竞争前”合作。最后,我们强调了“大数据”教育对该领域进一步发展的重要性。

相似文献

5
Machine Learning in Chemoinformatics and Medicinal Chemistry.机器学习在化学生物信息学和药物化学中的应用。
Annu Rev Biomed Data Sci. 2022 Aug 10;5:43-65. doi: 10.1146/annurev-biodatasci-122120-124216. Epub 2022 Apr 19.
10
The digitization of organic synthesis.有机合成的数字化。
Nature. 2019 Jun;570(7760):175-181. doi: 10.1038/s41586-019-1288-y. Epub 2019 Jun 12.

引用本文的文献

9
Discovery of TIGIT inhibitors based on DEL and machine learning.基于DEL和机器学习发现TIGIT抑制剂。
Front Chem. 2022 Jul 26;10:982539. doi: 10.3389/fchem.2022.982539. eCollection 2022.

本文引用的文献

1
Deep Learning in Drug Discovery.药物研发中的深度学习
Mol Inform. 2016 Jan;35(1):3-14. doi: 10.1002/minf.201501008. Epub 2015 Dec 30.
2
A renaissance of neural networks in drug discovery.神经网络在药物发现中的复兴。
Expert Opin Drug Discov. 2016 Aug;11(8):785-95. doi: 10.1080/17460441.2016.1201262. Epub 2016 Jul 4.
6
De Novo Design at the Edge of Chaos.处于混沌边缘的从头设计。
J Med Chem. 2016 May 12;59(9):4077-86. doi: 10.1021/acs.jmedchem.5b01849. Epub 2016 Feb 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验