Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Campusvej 55, Odense M 5230, Denmark.
Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
Nat Commun. 2016 Jul 28;7:12294. doi: 10.1038/ncomms12294.
Peptide-based structures can be designed to yield artificial proteins with specific folding patterns and functions. Template-based assembly of peptide units is one design option, but the use of two orthogonal self-assembly principles, oligonucleotide triple helix and a coiled coil protein domain formation have never been realized for de novo protein design. Here, we show the applicability of peptide-oligonucleotide conjugates for self-assembly of higher-ordered protein-like structures. The resulting nano-assemblies were characterized by ultraviolet-melting, gel electrophoresis, circular dichroism (CD) spectroscopy, small-angle X-ray scattering and transmission electron microscopy. These studies revealed the formation of the desired triple helix and coiled coil domains at low concentrations, while a dimer of trimers was dominating at high concentration. CD spectroscopy showed an extraordinarily high degree of α-helicity for the peptide moieties in the assemblies. The results validate the use of orthogonal self-assembly principles as a paradigm for de novo protein design.
基于肽的结构可以设计成具有特定折叠模式和功能的人工蛋白质。基于模板的肽单元组装是一种设计选项,但从未将两种正交自组装原理(寡核苷酸三螺旋和卷曲螺旋蛋白结构域形成)用于从头设计蛋白质。在这里,我们展示了肽-寡核苷酸缀合物在自组装更高阶类蛋白结构中的适用性。通过紫外解链、凝胶电泳、圆二色性(CD)光谱、小角 X 射线散射和透射电子显微镜对所得纳米组装体进行了表征。这些研究表明,在低浓度下可以形成所需的三螺旋和卷曲螺旋结构域,而在高浓度下则主要形成三聚体的二聚体。CD 光谱显示组装体中肽部分具有非常高的α-螺旋度。这些结果验证了使用正交自组装原理作为从头设计蛋白质的范例。