Liu Jinyu, Hu Jin, Cao Huibo, Zhu Yanglin, Chuang Alyssa, Graf D, Adams D J, Radmanesh S M A, Spinu L, Chiorescu I, Mao Zhiqiang
Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70018, USA.
Quantum Condensed Matter Division, Oak Ridge National Laboratory, TN 37830, USA.
Sci Rep. 2016 Jul 28;6:30525. doi: 10.1038/srep30525.
Layered compounds AMnBi2 (A = Ca, Sr, Ba, or rare earth element) have been established as Dirac materials. Dirac electrons generated by the two-dimensional (2D) Bi square net in these materials are normally massive due to the presence of a spin-orbital coupling (SOC) induced gap at Dirac nodes. Here we report that the Sb square net in an isostructural compound BaMnSb2 can host nearly massless Dirac fermions. We observed strong Shubnikov-de Haas (SdH) oscillations in this material. From the analyses of the SdH oscillations, we find key signatures of Dirac fermions, including light effective mass (~0.052m0; m0, mass of free electron), high quantum mobility (1280 cm(2)V(-1)S(-1)) and a π Berry phase accumulated along cyclotron orbit. Compared with AMnBi2, BaMnSb2 also exhibits much more significant quasi two-dimensional (2D) electronic structure, with the out-of-plane transport showing nonmetallic conduction below 120 K and the ratio of the out-of-plane and in-plane resistivity reaching ~670. Additionally, BaMnSb2 also exhibits a G-type antiferromagnetic order below 283 K. The combination of nearly massless Dirac fermions on quasi-2D planes with a magnetic order makes BaMnSb2 an intriguing platform for seeking novel exotic phenomena of massless Dirac electrons.
层状化合物AMnBi2(A = Ca、Sr、Ba或稀土元素)已被确认为狄拉克材料。由于在狄拉克节点处存在自旋轨道耦合(SOC)诱导的能隙,这些材料中由二维(2D)Bi方形网络产生的狄拉克电子通常具有质量。在此,我们报道等结构化合物BaMnSb2中的Sb方形网络可以容纳几乎无质量的狄拉克费米子。我们在这种材料中观察到了强烈的舒布尼科夫-德哈斯(SdH)振荡。通过对SdH振荡的分析,我们发现了狄拉克费米子的关键特征,包括轻有效质量(0.052m0;m0为自由电子质量)、高量子迁移率(1280 cm²V⁻¹s⁻¹)以及沿回旋轨道积累的π贝里相位。与AMnBi2相比,BaMnSb2还表现出更为显著的准二维(2D)电子结构,面外输运在120 K以下呈现非金属导电,面外和面内电阻率之比达到670。此外,BaMnSb2在283 K以下还表现出G型反铁磁序。准二维平面上几乎无质量的狄拉克费米子与磁序的结合,使得BaMnSb2成为探索无质量狄拉克电子新奇奇异现象的一个有趣平台。