Füller Janis J, Röpke René, Krausze Joern, Rennhack Kim E, Daniel Nils P, Blankenfeldt Wulf, Schulz Stefan, Jahn Dieter, Moser Jürgen
From the Institute of Microbiology and.
the Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, and.
J Biol Chem. 2016 Sep 16;291(38):20068-84. doi: 10.1074/jbc.M116.741561. Epub 2016 Jul 27.
Violacein is a natural purple pigment of Chromobacterium violaceum with potential medical applications as antimicrobial, antiviral, and anticancer drugs. The initial step of violacein biosynthesis is the oxidative conversion of l-tryptophan into the corresponding α-imine catalyzed by the flavoenzyme l-tryptophan oxidase (VioA). A substrate-related (3-(1H-indol-3-yl)-2-methylpropanoic acid) and a product-related (2-(1H-indol-3-ylmethyl)prop-2-enoic acid) competitive VioA inhibitor was synthesized for subsequent kinetic and x-ray crystallographic investigations. Structures of the binary VioA·FADH2 and of the ternary VioA·FADH2·2-(1H-indol-3-ylmethyl)prop-2-enoic acid complex were resolved. VioA forms a "loosely associated" homodimer as indicated by small-angle x-ray scattering experiments. VioA belongs to the glutathione reductase family 2 of FAD-dependent oxidoreductases according to the structurally conserved cofactor binding domain. The substrate-binding domain of VioA is mainly responsible for the specific recognition of l-tryptophan. Other canonical amino acids were efficiently discriminated with a minor conversion of l-phenylalanine. Furthermore, 7-aza-tryptophan, 1-methyl-tryptophan, 5-methyl-tryptophan, and 5-fluoro-tryptophan were efficient substrates of VioA. The ternary product-related VioA structure indicated involvement of protein domain movement during enzyme catalysis. Extensive structure-based mutagenesis in combination with enzyme kinetics (using l-tryptophan and substrate analogs) identified Arg(64), Lys(269), and Tyr(309) as key catalytic residues of VioA. An increased enzyme activity of protein variant H163A in the presence of l-phenylalanine indicated a functional role of His(163) in substrate binding. The combined structural and mutational analyses lead to the detailed understanding of VioA substrate recognition. Related strategies for the in vivo synthesis of novel violacein derivatives are discussed.
紫菌素是紫色杆菌产生的一种天然紫色色素,具有作为抗菌、抗病毒和抗癌药物的潜在医学应用价值。紫菌素生物合成的起始步骤是黄素酶L-色氨酸氧化酶(VioA)催化L-色氨酸氧化转化为相应的α-亚胺。合成了一种与底物相关的(3-(1H-吲哚-3-基)-2-甲基丙酸)和一种与产物相关的(2-(1H-吲哚-3-基甲基)丙-2-烯酸)竞争性VioA抑制剂,用于后续的动力学和X射线晶体学研究。解析了二元VioA·FADH2和三元VioA·FADH2·2-(1H-吲哚-3-基甲基)丙-2-烯酸复合物的结构。小角X射线散射实验表明,VioA形成“松散结合”的同二聚体。根据结构保守的辅因子结合结构域,VioA属于FAD依赖性氧化还原酶的谷胱甘肽还原酶家族2。VioA的底物结合结构域主要负责L-色氨酸的特异性识别。其他标准氨基酸能被有效区分,L-苯丙氨酸有少量转化。此外,7-氮杂色氨酸、1-甲基色氨酸、5-甲基色氨酸和5-氟色氨酸是VioA的有效底物。与产物相关的三元VioA结构表明在酶催化过程中蛋白质结构域发生了移动。结合基于结构的广泛诱变和酶动力学(使用L-色氨酸和底物类似物)确定精氨酸(64)、赖氨酸(269)和酪氨酸(309)是VioA的关键催化残基。在L-苯丙氨酸存在下,蛋白质变体H163A的酶活性增加,表明组氨酸(163)在底物结合中起功能作用。结构和突变分析相结合,使我们对VioA底物识别有了详细的了解。讨论了体内合成新型紫菌素衍生物的相关策略。