Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK.
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, USA.
Nat Commun. 2016 Jul 29;7:12271. doi: 10.1038/ncomms12271.
Semiconductor nanowires with precisely controlled structure, and hence well-defined electronic and optical properties, can be grown by self-assembly using the vapour-liquid-solid process. The structure and chemical composition of the growing nanowire is typically determined by global parameters such as source gas pressure, gas composition and growth temperature. Here we describe a more local approach to the control of nanowire structure. We apply an electric field during growth to control nanowire diameter and growth direction. Growth experiments carried out while imaging within an in situ transmission electron microscope show that the electric field modifies growth by changing the shape, position and contact angle of the catalytic droplet. This droplet engineering can be used to modify nanowires into three dimensional structures, relevant to a range of applications, and also to measure the droplet surface tension, important for quantitative development of strategies to control nanowire growth.
通过使用汽液固(VLS)过程进行自组装,可以生长出具有精确控制结构、因此具有明确电子和光学性质的半导体纳米线。生长中的纳米线的结构和化学成分通常由源气体压力、气体组成和生长温度等全局参数决定。在这里,我们描述了一种更局部的控制纳米线结构的方法。我们在生长过程中施加电场来控制纳米线的直径和生长方向。在原位透射电子显微镜内进行的生长实验表明,电场通过改变催化液滴的形状、位置和接触角来改变生长。这种液滴工程可用于将纳米线修改为与各种应用相关的三维结构,也可用于测量液滴表面张力,这对于定量开发控制纳米线生长的策略很重要。