Vijayakumar Harshavardhanan, Thamilarasan Senthil Kumar, Shanmugam Ashokraj, Natarajan Sathishkumar, Jung Hee-Jeong, Park Jong-In, Kim HyeRan, Chung Mi-Young, Nou Ill-Sup
Department of Horticulture, Sunchon National University, 255, Jungang-ro, Suncheon 57922, Korea.
Plant Systems Engineering Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Daejeon 34141, Korea.
Int J Mol Sci. 2016 Jul 27;17(8):1211. doi: 10.3390/ijms17081211.
Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.
植物作为固着生物,在冷胁迫条件下可能会遭受严重的生长和发育后果。谷胱甘肽转移酶(GSTs,EC 2.5.1.18)是普遍存在的多功能共轭蛋白,通过防止活性氧(ROS)造成的氧化损伤在应激反应中发挥主要作用。目前,对于它们在冷胁迫条件下不同生化和信号通路中的功能尚不清楚。在本研究中,我们采用联合计算策略,鉴定了65个甘蓝型油菜谷胱甘肽转移酶(BoGST),并基于进化分析将它们分为11类。BoGST与拟南芥GST之间存在明显的种间和种内重复。基于定位分析,我们提出了GST基因在冷胁迫期间可能参与的途径。此外,在冷条件下对两个冷反应不同的基因型(耐寒和敏感)中GST基因预测的假定功能进行了表达分析,这些基因中的大多数分别在耐寒(CT)和冷敏感(CS)品系中于6小时和1小时时高表达。总体而言,BoGSTU19、BoGSTU24、BoGSTF10是在甘蓝型油菜中高表达的候选基因。对甘蓝型油菜中GST超家族的进一步研究将有助于理解植物耐寒性的复杂机制。