Suppr超能文献

炎症对呼吸可塑性的影响。

The impact of inflammation on respiratory plasticity.

作者信息

Hocker Austin D, Stokes Jennifer A, Powell Frank L, Huxtable Adrianne G

机构信息

Department of Human Physiology, University of Oregon, Eugene, Oregon, United States.

Division of Physiology, Department of Medicine, University of California San Diego, La Jolla, California, United States.

出版信息

Exp Neurol. 2017 Jan;287(Pt 2):243-253. doi: 10.1016/j.expneurol.2016.07.022. Epub 2016 Jul 27.

Abstract

Breathing is a vital homeostatic behavior and must be precisely regulated throughout life. Clinical conditions commonly associated with inflammation, undermine respiratory function may involve plasticity in respiratory control circuits to compensate and maintain adequate ventilation. Alternatively, other clinical conditions may evoke maladaptive plasticity. Yet, we have only recently begun to understand the effects of inflammation on respiratory plasticity. Here, we review some of common models used to investigate the effects of inflammation and discuss the impact of inflammation on nociception, chemosensory plasticity, medullary respiratory centers, motor plasticity in motor neurons and respiratory frequency, and adaptation to high altitude. We provide new data suggesting glial cells contribute to CNS inflammatory gene expression after 24h of sustained hypoxia and inflammation induced by 8h of intermittent hypoxia inhibits long-term facilitation of respiratory frequency. We also discuss how inflammation can have opposite effects on the capacity for plasticity, whereby it is necessary for increases in the hypoxic ventilatory response with sustained hypoxia, but inhibits phrenic long term facilitation after intermittent hypoxia. This review highlights gaps in our knowledge about the effects of inflammation on respiratory control (development, age, and sex differences). In summary, data to date suggest plasticity can be either adaptive or maladaptive and understanding how inflammation alters the respiratory system is crucial for development of better therapeutic interventions to promote breathing and for utilization of plasticity as a clinical treatment.

摘要

呼吸是一种至关重要的稳态行为,在整个生命过程中必须得到精确调节。通常与炎症相关的临床病症会破坏呼吸功能,可能涉及呼吸控制回路的可塑性,以进行补偿并维持足够的通气。另外,其他临床病症可能引发适应不良的可塑性。然而,我们直到最近才开始了解炎症对呼吸可塑性的影响。在此,我们回顾一些用于研究炎症影响的常见模型,并讨论炎症对伤害感受、化学感觉可塑性、延髓呼吸中枢、运动神经元的运动可塑性和呼吸频率以及对高原适应的影响。我们提供了新的数据,表明胶质细胞在持续低氧24小时后对中枢神经系统炎症基因表达有贡献,并且由间歇性低氧8小时诱导的炎症会抑制呼吸频率的长期易化。我们还讨论了炎症如何对可塑性能力产生相反的影响,即持续低氧时它对于低氧通气反应的增加是必要的,但在间歇性低氧后会抑制膈神经的长期易化。这篇综述突出了我们在炎症对呼吸控制(发育、年龄和性别差异)影响方面的知识空白。总之,迄今为止的数据表明可塑性既可以是适应性的,也可以是适应不良的,了解炎症如何改变呼吸系统对于开发更好的促进呼吸的治疗干预措施以及将可塑性用作临床治疗至关重要。

相似文献

1
The impact of inflammation on respiratory plasticity.
Exp Neurol. 2017 Jan;287(Pt 2):243-253. doi: 10.1016/j.expneurol.2016.07.022. Epub 2016 Jul 27.
2
IL-1 receptor activation undermines respiratory motor plasticity after systemic inflammation.
J Appl Physiol (1985). 2018 Aug 1;125(2):504-512. doi: 10.1152/japplphysiol.01051.2017. Epub 2018 Mar 22.
7
Reactive oxygen species and respiratory plasticity following intermittent hypoxia.
Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):263-71. doi: 10.1016/j.resp.2008.07.008.
8
Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity.
Handb Clin Neurol. 2022;188:409-432. doi: 10.1016/B978-0-323-91534-2.00016-3.
9
Cyclooxygenase enzyme activity does not impair respiratory motor plasticity after one night of intermittent hypoxia.
Respir Physiol Neurobiol. 2018 Oct;256:21-28. doi: 10.1016/j.resp.2017.12.004. Epub 2017 Dec 9.
10
Ampakine pretreatment enables a single brief hypoxic episode to evoke phrenic motor facilitation.
J Neurophysiol. 2020 Mar 1;123(3):993-1003. doi: 10.1152/jn.00708.2019. Epub 2020 Jan 15.

引用本文的文献

9
The Role of Inflammation in Cognitive Impairment of Obstructive Sleep Apnea Syndrome.
Brain Sci. 2022 Sep 27;12(10):1303. doi: 10.3390/brainsci12101303.
10
Aspirin reverts lipopolysaccharide-induced learning and memory impairment: first evidence from an invertebrate model system.
Naunyn Schmiedebergs Arch Pharmacol. 2022 Dec;395(12):1573-1585. doi: 10.1007/s00210-022-02286-4. Epub 2022 Sep 14.

本文引用的文献

1
Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis.
Compr Physiol. 2016 Jun 13;6(3):1345-85. doi: 10.1002/cphy.c150026.
2
Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor.
Glia. 2016 Oct;64(10):1788-94. doi: 10.1002/glia.23007. Epub 2016 Jun 1.
3
Ibuprofen Blunts Ventilatory Acclimatization to Sustained Hypoxia in Humans.
PLoS One. 2016 Jan 4;11(1):e0146087. doi: 10.1371/journal.pone.0146087. eCollection 2016.
5
Prostaglandin E2 Mediates Cardiorespiratory Disturbances during Infection in Neonates.
J Pediatr. 2015 Dec;167(6):1207-13.e3. doi: 10.1016/j.jpeds.2015.08.053. Epub 2015 Oct 2.
6
Activity-triggered tetrapartite neuron-glial interactions following peripheral injury.
Curr Opin Pharmacol. 2016 Feb;26:16-25. doi: 10.1016/j.coph.2015.09.006. Epub 2015 Sep 30.
7
Oxygen Sensing and Homeostasis.
Physiology (Bethesda). 2015 Sep;30(5):340-8. doi: 10.1152/physiol.00022.2015.
8
Effect of Lipopolysaccharide Exposure on Structure and Function of the Carotid Body in Newborn Rats.
Adv Exp Med Biol. 2015;860:115-21. doi: 10.1007/978-3-319-18440-1_13.
9
Repetitive acute intermittent hypoxia does not promote generalized inflammatory gene expression in the rat CNS.
Respir Physiol Neurobiol. 2015 Nov;218:1-10. doi: 10.1016/j.resp.2015.07.008. Epub 2015 Jul 26.
10
TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects.
Neuroscience. 2015 Aug 27;302:2-22. doi: 10.1016/j.neuroscience.2015.06.038. Epub 2015 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验