Suppr超能文献

记录从幼儿期到童年晚期逐时的脑信号变异性。

Charting moment-to-moment brain signal variability from early to late childhood.

作者信息

Miskovic Vladimir, Owens Max, Kuntzelman Karl, Gibb Brandon E

机构信息

Center for Affective Science, State University of New York at Binghamton, USA.

Center for Affective Science, State University of New York at Binghamton, USA.

出版信息

Cortex. 2016 Oct;83:51-61. doi: 10.1016/j.cortex.2016.07.006. Epub 2016 Jul 15.

Abstract

Large-scale brain signals exhibit rich intermittent patterning, reflecting the fact that the cortex actively eschews fixed points in favor of itinerant wandering with frequent state transitions. Fluctuations in endogenous cortical activity occur at multiple time scales and index a dynamic repertoire of network states that are continuously explored, even in the absence of external sensory inputs. Here, we quantified such moment-to-moment brain signal variability at rest in a large, cross-sectional sample of children ranging in age from seven to eleven years. Our findings revealed a monotonic rise in the complexity of electroencephalogram (EEG) signals as measured by sample entropy, from the youngest to the oldest age cohort, across a range of time scales and spatial regions. From year to year, the greatest changes in intraindividual brain signal variability were recorded at electrodes covering the anterior cortical zones. These results provide converging evidence concerning the age-dependent expansion of functional cortical network states during a critical developmental period ranging from early to late childhood.

摘要

大规模脑信号呈现出丰富的间歇性模式,这反映出皮层积极避开固定点,转而倾向于频繁状态转换的巡回游走。内源性皮层活动的波动发生在多个时间尺度上,并指示了一系列不断被探索的网络状态的动态组合,即使在没有外部感觉输入的情况下也是如此。在这里,我们在一个年龄范围从7岁到11岁的大型横断面儿童样本中,对静息状态下这种逐时刻的脑信号变异性进行了量化。我们的研究结果显示,通过样本熵测量,脑电图(EEG)信号的复杂性从最年幼到最年长的年龄组,在一系列时间尺度和空间区域上呈单调上升。逐年来看,个体脑信号变异性的最大变化记录在覆盖前皮层区域的电极上。这些结果为从儿童早期到晚期的关键发育阶段中功能性皮层网络状态的年龄依赖性扩展提供了趋同的证据。

相似文献

1
Charting moment-to-moment brain signal variability from early to late childhood.
Cortex. 2016 Oct;83:51-61. doi: 10.1016/j.cortex.2016.07.006. Epub 2016 Jul 15.
2
Cortical maturation from childhood to adolescence is reflected in resting state EEG signal complexity.
Dev Cogn Neurosci. 2021 Apr;48:100945. doi: 10.1016/j.dcn.2021.100945. Epub 2021 Mar 23.
3
Age-related Multiscale Changes in Brain Signal Variability in Pre-task versus Post-task Resting-state EEG.
J Cogn Neurosci. 2016 Jul;28(7):971-84. doi: 10.1162/jocn_a_00947. Epub 2016 Mar 4.
4
Developmental changes in spontaneous electrocortical activity and network organization from early to late childhood.
Neuroimage. 2015 Sep;118:237-47. doi: 10.1016/j.neuroimage.2015.06.013. Epub 2015 Jun 7.
5
Complexity of Multi-Channel Electroencephalogram Signal Analysis in Childhood Absence Epilepsy.
PLoS One. 2015 Aug 5;10(8):e0134083. doi: 10.1371/journal.pone.0134083. eCollection 2015.
6
The multiscale entropy: Guidelines for use and interpretation in brain signal analysis.
J Neurosci Methods. 2016 Nov 1;273:175-190. doi: 10.1016/j.jneumeth.2016.09.004. Epub 2016 Sep 14.
8
Cognitive and neuropsychiatric correlates of EEG dynamic complexity in patients with Alzheimer's disease.
Prog Neuropsychopharmacol Biol Psychiatry. 2013 Dec 2;47:52-61. doi: 10.1016/j.pnpbp.2013.07.022. Epub 2013 Aug 13.
9
Brain Dynamics of Aging: Multiscale Variability of EEG Signals at Rest and during an Auditory Oddball Task.
eNeuro. 2015 Jun 3;2(3). doi: 10.1523/ENEURO.0067-14.2015. eCollection 2015 May-Jun.
10
Coupling between resting cerebral perfusion and EEG.
Brain Topogr. 2013 Jul;26(3):442-57. doi: 10.1007/s10548-012-0265-7. Epub 2012 Nov 18.

引用本文的文献

2
Multiscale entropy of ADHD children during resting state condition.
Cogn Neurodyn. 2023 Aug;17(4):869-891. doi: 10.1007/s11571-022-09869-0. Epub 2022 Aug 30.
3
Linear and Non-linear Analyses of EEG in a Group of ASD Children During Resting State Condition.
Brain Topogr. 2023 Sep;36(5):736-749. doi: 10.1007/s10548-023-00976-7. Epub 2023 Jun 18.
4
Entropy, complexity, and maturity in children's neural responses to naturalistic video lessons.
Cortex. 2023 Jun;163:14-25. doi: 10.1016/j.cortex.2023.02.008. Epub 2023 Mar 18.
5
Signal complexity indicators of health status in clinical EEG.
Sci Rep. 2021 Oct 12;11(1):20192. doi: 10.1038/s41598-021-99717-8.
6
Neural Correlates of Cognitive Dysfunctions in Cervical Spondylotic Myelopathy Patients: A Resting-State fMRI Study.
Front Neurol. 2020 Dec 23;11:596795. doi: 10.3389/fneur.2020.596795. eCollection 2020.
7
Spatiotemporal complexity patterns of resting-state bioelectrical activity explain fluid intelligence: Sex matters.
Hum Brain Mapp. 2020 Dec;41(17):4846-4865. doi: 10.1002/hbm.25162. Epub 2020 Aug 18.
8
Epigenetic tuning of brain signal entropy in emergent human social behavior.
BMC Med. 2020 Aug 17;18(1):244. doi: 10.1186/s12916-020-01683-x.
9
Standard multiscale entropy reflects neural dynamics at mismatched temporal scales: What's signal irregularity got to do with it?
PLoS Comput Biol. 2020 May 11;16(5):e1007885. doi: 10.1371/journal.pcbi.1007885. eCollection 2020 May.
10
Visual feedback during motor performance is associated with increased complexity and adaptability of motor and neural output.
Behav Brain Res. 2019 Dec 30;376:112214. doi: 10.1016/j.bbr.2019.112214. Epub 2019 Sep 5.

本文引用的文献

1
Maturation of the P3 and concurrent oscillatory processes during adolescence.
Clin Neurophysiol. 2016 Jul;127(7):2599-609. doi: 10.1016/j.clinph.2016.04.019. Epub 2016 May 3.
2
Small-World Propensity and Weighted Brain Networks.
Sci Rep. 2016 Feb 25;6:22057. doi: 10.1038/srep22057.
3
Enhanced brain signal variability in children with autism spectrum disorder during early childhood.
Hum Brain Mapp. 2016 Mar;37(3):1038-50. doi: 10.1002/hbm.23089. Epub 2015 Dec 21.
4
Metastability and Coherence: Extending the Communication through Coherence Hypothesis Using A Whole-Brain Computational Perspective.
Trends Neurosci. 2016 Mar;39(3):125-135. doi: 10.1016/j.tins.2016.01.001. Epub 2016 Jan 29.
5
Multistability in Large Scale Models of Brain Activity.
PLoS Comput Biol. 2015 Dec 28;11(12):e1004644. doi: 10.1371/journal.pcbi.1004644. eCollection 2015 Dec.
6
Developmental changes in spontaneous electrocortical activity and network organization from early to late childhood.
Neuroimage. 2015 Sep;118:237-47. doi: 10.1016/j.neuroimage.2015.06.013. Epub 2015 Jun 7.
7
Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease.
Biol Psychiatry. 2015 Jun 15;77(12):1089-97. doi: 10.1016/j.biopsych.2015.04.016. Epub 2015 Apr 28.
8
Network structure shapes spontaneous functional connectivity dynamics.
J Neurosci. 2015 Apr 8;35(14):5579-88. doi: 10.1523/JNEUROSCI.4903-14.2015.
9
Microstates in resting-state EEG: current status and future directions.
Neurosci Biobehav Rev. 2015 Feb;49:105-13. doi: 10.1016/j.neubiorev.2014.12.010. Epub 2014 Dec 17.
10
Functional connectivity dynamics: modeling the switching behavior of the resting state.
Neuroimage. 2015 Jan 15;105:525-35. doi: 10.1016/j.neuroimage.2014.11.001. Epub 2014 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验