Berbusse Gregory W, Woods Laken C, Vohra Bhupinder P S, Naylor Kari
Department of Cellular Physiology and Molecular Biophysics, University of Arkansas for Medical Sciences Little Rock, AR, USA.
Department of Biology, University of Central Arkansas Conway, AR, USA.
Front Cell Neurosci. 2016 Jul 19;10:179. doi: 10.3389/fncel.2016.00179. eCollection 2016.
Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson's and Alzheimer's, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured dorsal root ganglia (DRG) neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics.
轴突退化是多种神经退行性疾病(如帕金森病和阿尔茨海默病)的一个显著特征,其常常表现为异常的线粒体动力学。线粒体的分裂、融合和运动已被证明在进行性神经退行性变中尤为重要。因此,我们研究了这些重要的动力学过程,以及长春新碱诱导培养的背根神经节(DRG)神经元轴突降解过程中的线粒体碎片化现象。胞质烟酰胺单核苷酸腺苷转移酶1(CytNmnat1)在包括长春新碱毒性在内的各种模型中均能抑制轴突退化。其保护机制尚未完全明确;因此,我们还研究了CytNmnat1对长春新碱处理的神经元中线粒体动力学的影响。我们观察到,长春新碱处理会降低线粒体的分裂、融合和运动速率,并诱导线粒体碎片化。这些线粒体事件先于可见的轴突退化出现。CytNmnat1的过表达可抑制轴突退化,并在长春新碱处理的神经元中维持正常的线粒体动力学和运动。我们认为,线粒体结构和动力学的改变是导致轴突退化的早期事件,而CytNmnat1通过阻止长春新碱诱导的线粒体结构和动力学变化来阻断轴突退化。